Чем обрабатывается титан. Механическая резка и обработка титана

Актуальность

Для изготовления конструкций и деталей из титановых сплавов применяются всевозможные виды механической обработки: шлифование, точение, сверление, фрезерование, полирование.
Одной из важных особенностей при механической обработке деталей из титана и сплавов является то, что необходимо обеспечить ресурсные, в особенности усталостные характеристики, в значительной степени зависящие от качеств поверхностного слоя, который формируется при холодной обработке. Из-за низкой теплопроводности и др. специфических свойств титана, проведение шлифования как завершающей стадии обработки затруднено. Во время шлифовки очень легко могут образовываться прижоги, в поверхностном слое могут возникать дефектные структуры и остаточные напряжения, растяжения, которые существенно влияют на снижение усталостной прочности изделий. Поэтому, шлифование деталей из титана обязательно проводится при пониженных скоростях и в случае необходимости может быть заменено на лезвийную либо абразивную обработку низкоскоростными методами. В случае же применения шлифования, оно должно проводиться с применением строго регламентированных режимов с проведением последующего контроля поверхности деталей на наличие прижогов и сопровождаться улучшением качеств детали за счет упрочнения поверхностным пластическим деформированием (ППД).

Сложности

Из-за высоких прочностных свойств титан плохо поддаются обработке резанием . Он имеет высокое соотношение предела текучести ко времени сопротивления разрыву примерно 0,85−0,95. Например, для стали этот показатель не превышает 0,75. Как результат, при механической обработке титановых сплавов необходимы большие усилия, что из-за низкой теплопроводности влечет за собой значительное повышение температуры в поверхностных слоях разреза и затрудняет охлаждение зоны резки. Из-за сильной адгезии титан накапливается на режущей кромке, что значительно повышает силу трения. Кроме того, приваривание и налипание титана в местах соприкосновения поверхностей приводит к изменению геометрии инструмента. Такие изменения, изменяющие оптимальную конфигурацию, влекут за собой дальнейшее повышение усилий для обработки, что, соответственно, приводит к еще большему повышению температуры в точке контакта и ускорению износа. Больше всего на повышение температуры в рабочей зоне влияет скорость резания, в меньшей степени это зависит от усилия подачи инструмента. Наименьшее влияние на повышение температуры оказывает глубина проведения резания.

Под действием высоких температур при резании происходит окисление титановой стружки и обрабатываемой детали. Это влечет в последующем для стружки проблему, связанную с ее утилизацией и переплавкой. Аналогичный процесс для обрабатываемой детали в последующем может привести к ухудшению ее эксплуатационных характеристик.

Сравнительный анализ

Процесс холодной обработки титановых сплавов по трудоемкости в 3−4 раза сложнее, чем обработка углеродистых сталей, и в 5−7 раз — чем обработка алюминия. По информации ММПП «Салют», сплавы титана ВТ5 и ВТ5−1 в сравнению с углеродистых сталью (с 0,45% С), имеют коэффициент относительной обрабатываемости 0,35−0,48, а для сплавов ВТ6, ВТ20 и ВТ22 этот показатель еще меньше и составляет 0,22−0,26. Рекомендуется при механической обработке использовать низкую скорость резки при небольшой подаче, используя для охлаждения большое количество охлаждающей жидкости. При обработке изделий из титана применяются режущие инструменты из наиболее износостойкой быстрорежущей стали, предпочтение отдается твердым сортам сплавов. Но даже при выполнении всех предписанных условий для резания, скорости должны быть уменьшены, по крайней мере, в 3−4 раза, по сравнению с обработкой стали, что должно обеспечить приемлемую стойкость инструмента, особенно это важно при работе на станках с ЧПУ.

Оптимизация

Температуру в зоне резки и усилие для резания можно существенно снизить, увеличив содержание водорода в сплаве, вакуумным отжигом и соответствующей механической обработкой. Проведение легирования сплавов из титана при помощи водорода дает в конечном итоге значительное снижение температуры в зоне резания, дает возможность снизить силу резания, повышает стойкость твердосплавного инструмента до 10 раз в зависимости от природы сплава и режима резания. Этот способ дает возможность увеличить скорость обработки в 2 раза без потери качества, а также увеличивать усилие и глубину при проведении резания без снижения скорости.

Для механической обработки деталей из сплавов титана широкое применение получили технологические процессы, которые позволяют совместить несколько операций в одну за счет использования многоинструментального оборудования. Наиболее целесообразно такого рода технологические операции проводить на многооперационных станках (обрабатывающих центрах). К примеру, для изготовления силовых деталей из штамповок применяются станки МА-655А, ФП-17СМН, ФП-27С; деталей типа «кронштейн», «колонка», «корпус» из фасонной отливки и штамповки — станки «Горизонт», Me-12−250, МА-655А, листовых панелей — станок ВФЗ-М8. На этих станках при обработке большинства деталей реализован принцип «максимальной» законченности обработки в одной операции, что достигается благодаря последовательной обработке детали с нескольких сторон на одном станке при помощи нескольких установленных на нем приспособлений.

Фрезерование

Из-за необходимости приложения больших усилий для механической обработки сплавов титана применяются, как правило, крупные станки (ФП-7, ФП-27, ФП-9, ВФЗ-М8 и т. п.). Фрезерование является самым трудоемким процессом во время изготовления деталей. Особенно большой объем таких работ приходится на изготовление силовых деталей каркасов самолета: нервюры, шпангоуты, балки, лонжероны, траверсы.

При фрезеровании деталей типа «траверса», «балки», «нервюра» используется несколько методов. 1) При помощи специальных гидравлических или механических копиров на универсально-фрезерных станках. 2) По копирам на копирно-фрезерных гидравлических станках. 3) На станках с ЧПУ типа МА-655С5, ФП-11, ФП-14. 4) При помощи трехкоординатных станков с ЧПУ. При этом используют: специальные сборные фрезы с изменяемым во время обработки углом; фасонные вогнутые и выпуклые фрезы радиационного профиля; концевые фрезы с подведением к цилиндрической поверхности детали плоскости стола под необходимым углом.

Для обработки авиационных материалов в нашей стране создано множество станков, которые не уступают мировым стандартам, а некоторые из них не имеют аналогов за границей. Например, станок ВФ-33 с ЧПУ (продольно-фрезерный трёхшпиндельный трёхкоординатный) назначение которого одновременная обработка тремя шпинделями панелей, монорельсов, нервюр, балок и других такого рода деталей для тяжелых и легких самолетов.
Станок 2ФП-242 В, имеющий два подвижных портала и ЧПУ (продольно-фрезерный трехшпиндельный четырехкоординатный) разработан для обработки габаритных лонжеронов и панелей при для тяжелых и широкофюзеляжных самолетов. Станок ФРС-1, оснащенный подвижной колонной, горизонтально-фрезерно-расточный, 15-ти координатный с ЧПУ — предназначен для обработки стыковых поверхностей центроплана и крыла широкофюзеляжных самолетов. СГПМ-320, гибкий производственный модуль, в состав которого входят токарный станок, ЧПУ АТ-320, магазин на 13 инструментов, манипулятор автоматический для съема и установки деталей для ЧПУ. Гибкий производственный комплекс АЛК-250, созданный для производства прецизионных деталей для корпуса гидроагрегатов.

Инструменты

Чтобы обеспечить оптимальные условия резания и высокое качество поверхности деталей, необходимо строгое соблюдение геометрических параметров инструмента из твердых сплавов и быстрорежущих сталей. Резцы с пластинками из твердого сплава ВК8 применяются для точения кованых заготовок. Рекомендуются следующие геометрические параметры резцов во время обработки по газонасыщенной корке: главный угол в плане φ1 =45°, вспомогательный угол в плане φ =14°, передний угол γ=0°; задний угол α = 12°.При следующих режимах резания: подача s = 0,5 — 0,8 мм/об, глубина резания t не менее 2 мм, скорость резания v = 25 — 35 м/мин. Для проведения чистового и получистового непрерывного точения можно применить инструменты из твердых сплавов ВК8, ВК4, ВКбм, ВК6 и др. при глубине резания 1−10 мм, скорость резки составляет v = 40−100 мм/мин, а подача должна составлять s = 0,1−1 мм/об. Могут так же применяться инструменты из быстрорежущей стали (Р9К5, Р9М4К8, Р6М5К5). Для резцов, изготовленных из быстрорежущей стали, разработана следующая геометрическая конфигурация: радиус при вершине r = 1 мм, задний угол α = 10°, φ = 15°. Допустимые режимы резки при точении титана достигаются при глубине резки t = 0,5−3 мм, v = 24−30 м/мин, s <0,2 мм.

Твердые сплавы

Проведение фрезерных работ с титаном затрудняет налипание титана на зубья фрезы и их выкашивание. Для изготовления рабочих поверхностей фрез используются твердые сплавы ВК8, ВК6М, ВК4 и быстрорежущие стали Р6М5К5, Р9К5, Р8МЗК6С, Р9М4К8, Р9К10. Для проведения фрезеровки титана при помощи фрез с пластинами из сплава ВК6М рекомендуется использовать следующий режим резания: t = 2 — 4 мм, v = 80 — 100 м/мин, s =0,08−0,12 мм/зуб.

Сверление

Проведение сверления титана затрудняет налипание стружки на рабочую поверхность инструмента и ее набивание в отводящие канавки сверла, что ведёт к повышению сопротивления резанию и быстрому износу режущей кромки. Для предупреждения этого рекомендуется при проведении глубокого сверления периодически проводить очистку инструмента от стружки. Для сверления применяют инструменты из быстрорежущих сталей Р12Р9К5, Р18Ф2, Р9М4К8, Р9К10, Р9Ф5, Ф2К8МЗ, Р6М5К5 и твердого сплава ВК8. При этом рекомендуются следующие параметры геометрии сверл: для угла наклона спиральной канавки 25−30, 2φ0 = 70−80°, 2φ = 120−130°, α = 12−15°, φ = 0−3°.

Для повышения производительности при обработке титановых сплавов резанием и увеличения стойкости применяемого инструмента используют жидкости типа РЗ СОЖ-8. Они относятся к галлоидосодержащим смазывающе-охлаждающим. Охлаждение обрабатываемых деталей проводится методом обильного орошения. Применение галлоидосодержащих жидкостей при обработке влечет за собой образование солевой корки на поверхности титановых деталей, которая с учетом нагрева и одновременного действия напряжения может вызвать солевую коррозию. Для предотвращения этого после обработки с применением РЗ СОЖ-8 детали подвергаются облагораживающему травлению, во время которого снимается поверхностный слой толщиной до 0,01 мм. Во время проведения сборочных операций применение РЗ СОЖ-8 не допускается.

Шлифовка

На обрабатываемость титановых сплавов существенно влияет их химический и фазовый состав, тип и параметры микроструктуры. Наиболее затруднена обработка титановых полуфабрикатов и деталей, имеющих грубую пластинчатую структуру. Такого рода структура имеется у фасонных отливок. Кроме того, фасонные отливки из титана имеют газонасыщенную корку на поверхности, которая сильно влияет на износ инструмента.

Проведение шлифовки титановых деталей затруднено из-за высокой склонности контактного схватывания во время трения. Оксидная поверхностная пленка легко разрушается во время трения под действием удельных нагрузок. В процессе трения в местах соприкосновения поверхностей происходит активное перенесение материала из обрабатываемой детали на инструмент («схватывание»). Способствуют этому так же и другие свойства сплавов титана: более низкая теплопроводность, повышение упругой деформации при сравнительно низком модуле упругости. Из-за выделения тепла на трущейся поверхности утолщается оксидная пленка, что в свою очередь повышает прочность поверхностного слоя.

При обработке деталей из титана применяются ленточное шлифование и шлифование абразивными кругами. Для промышленных сплавов наиболее распространено применение абразивных кругов из зеленого карбида кремния, который обладает большой твердостью и хрупкостью при стабильности физико-механических свойств с более высокими абразивными способностями, чем у черного карбида кремния.

Купить, цена

Компания ООО «Электровек-сталь» реализует металлопрокат по оптимальной цене. Она формируется с учетом ставок на LME (London metal exchange) и зависит от технологических особенностей производства без включения дополнительных затрат. Поставляем полуфабрикаты из титана и его сплавов в широком ассортименте. Все партии изделий имеют сертификат качества на соответствие требованиям стандартов. У нас вы можете купить оптом самую различную продукцию для масштабных производств. Широкий выбор, исчерпывающие консультации наших менеджеров, доступные цены и своевременность поставки определяют лицо нашей компании. При оптовых покупках действует система скидок

По сравнению с другими металлами, механическая обработка титана нуждается в более высоком требовании и выполняется в больших ограничениях. Сплавы из титана обладают некоторыми свойствами, которые способны значительно влиять как на процесс резания, так и на материал, который подвергается резанию. Если режим и инструмент выбраны правильно, а так же надежно закреплена заготовка, процесс металлообработки титана . будет высокоэффективным. Так же можно избежать многих проблем, которые часто возникают при обработке титана , просто нужно преодолеть влияние, которое оказывает титан на процесс металлообработки .

    Многие свойства, которые придают титану статус привлекательного материала для изготовления деталей, оказывают значительный эффект на его обрабатываемость, а именно:
  • имеет более низкую упругость и легче подвергается упругости, в отличие от стали;
  • высокая прочность по отношению к своему весу, причем его плотность составляет 60% плотности стали;
  • низкая теплопроводность;
  • более высокая стойкость к коррозии, чем нержавеющая сталь;

Все свойства перечисленные выше означают, что титан обладает высокими и концентрированными силами при его обработке. Это часто производит вибрацию при обработке и ведет к быстрому износу режущей детали. Кроме этого, титан плохо проводит тепло. Поэтому обработка титана требует от качества инструмента высокой стойкости.

Трудности механической обработки титана

Считается, что титан трудно поддается обработке, но это типично для современных станков, инструментов и методов обработки. Частично трудности в - это новая область, в которой пока еще не набрано хорошее количество опыта. Титан так же может казаться более трудным в обработке по сравнению с другими металлами, такими как: чугун или низколегированные стали. Механическую обработку титана , следует выполнять при других подачах и скоростях, нежели в сравнении с другими металлами, но все же он может быть довольно легок в обработке. Если деталь титана, жестко зажата на станке, в хорошем состоянии и оборудованным специальным шпинделем конусной формы ISO 50, с коротким вылетом инструмента – проблем возникать не должно, при условии что режущий инструмент выбран правильно.

Но стабильные и идеальные условия не всегда присутствуют при фрезеровании. Кроме этого, многие детали из титана имеют сложную форму узкими, мелкими или глубокими и большими карманами, тонкими фасками и стенками. Для правильной и успешной обработки этих форм неизбежно потребуется инструмент более длинного размера, что быстрее может вести к деформации инструмента. Да и потенциальные проблемы с вибрации часто возникают при обработке металла.

Как бороться с вибрацией и теплом при механической обработке титана

: Большинство станков оснащены шпинделями с ISO 40 конусом. Из-за интенсивной эксплуатации этих станков они не долго остаются в новом состоянии. Обработка титана , как правило, включает в себя контурную обработку, разрезание канавок или обработку кромок, а все эти операции способны приводить к вибрации. Поэтому необходимо принимать меры для ее предотвращения, по возможность повышение мощности закрепления детали. Главным способом решения данной проблемы, является многоступенчатое крепление заготовок, при котором заготовки располагают ближе к шпинделю, что позволяет ослабить вибрацию.
Из-за того, что материал титана сохраняет прочность и твердость при высоких температурах, на режущую кромку воздействует большая нагрузка. При этом в месте резания вырабатывается большое количество тепла, а это опасность к деформации. Поэтому большое значение при обработке титана приобретает правильный выбор геометрия сменной пластинки и марка сплава. Решением этой проблемы является пластины с покрытием PVD, которые способны существенно повысить эффективность.

Необходимые условия для расчетов режима резания титана при обработке металла:

Точность торцевого и рационального биения инструментов очень важно при механической обработке титана . К примеру, если пластина неверно установлена в корпусе фрезы, это приведет к быстрому повреждению режущих кромок. Хотя предпочтение отдается геометрии с положительным передним углом, инструмент с немного отрицательным передним углом способен вести обработку при более высоких подачах, которые достигают 0.5 мм. на зуб. В таком случае, значительно важна надежность закрепления заготовки и жесткость станка.
Минимальная применяемая подача при фрезеровании титана обычно составляет 0.1 мм. на зуб. Так же можно уменьшить вращения шпинделя в целях получения исходной скорости подачи. Неправильно выбранная частота вращения шпинделя может сократить стойкость на 90% при минимальной подачи на зуб.
Как только стабильные условия обеспечиваются, подачу и частоту вращения шпинделя можно увеличить для достижения оптимальной эффективности. Еще одним способ является уменьшение пластин из фрезы, либо выбор фрезы с наиболее меньшим количеством пластин.

Производство НПП РУСМЕТ обрабатывает цветной металл
позволяет резать титан, разрезать алюминий и его сплавы, орабатывать латунь, изготавливать из меди и других цветных металлов и их сплавов металлоизделия на станках с ЧПУ.
Важно знать, что , самый эффективный способ металлообработки , заготовительного производства и

Механическая обработка титана – это технологический процесс, в рамках которого заготовке придают желаемую форму, размер, а также чистоту поверхности. Данный металл очень прочный, отлично противостоит коррозии, имеет небольшую массу. Эти характеристики являются его важными преимуществами и определяют широкую сферу применения титановых сплавов и самого металла в чистом виде. Чаще всего он используется в качестве конструкционного материала в:

  • ракетостроении;
  • изготовлении авиационной техники;
  • морском судостроении.

Вместе с тем, взаимодействовать с титаном достаточно сложно, это требует не только дорогостоящего высокомощного оборудования, но и профессионального подхода. Поэтому доверить выполнение сложных работ лучше опытным специалистам компании Профлазермет.

В своей работе мы используем передовые технологии, новейшие лазерные, шлифовальные станки, резаки и прочее мощное, точное оборудование, что гарантирует качество конечного результата.

Существует несколько видов механической обработки титана:

  • резка;
  • фрезеровка;
  • шлифовка;
  • сверление.

Каждая из указанных мехобработок имеет свои особенности и сложности, которые нужно учитывать при выполнении поставленных задач. Это не только выбор правильного оборудования, но также его корректная настройка, скорость выполнения каждой задачи и прочие параметры.

Резка титана: разновидности и особенности процесса

Резка металла – это самый популярный вид мехобработки материала, так как он позволяет получить заготовку нужного размера, а иногда и формы. Существует несколько видов резки данного металла, самые популярные из которых:

    • гидроабразивная;
    • лазерная;
  • механическим воздействием.

Последний способ используется крайне редко, в основном, если заготовки имеют незначительную толщину. При этом процесс требует большого количества операций по постобработке и имеет множество противопоказаний. Поэтому в большинстве случаев резку титановых заготовок осуществляют с помощью лазерного оборудования или абразивов.

Суть гидроабразивной резки заключается в том, что под воздействием очень мощной струи воды, в которую заранее поместили твердые абразивные частицы, происходит раскройка металла. У методики множество преимуществ:

  • возможность получать заготовки любой сложности;
  • высокая скорость обработки металла;
  • рез получается чистый, качественный, при этом не требуется нагрев материала;
  • минимум отходов;
  • возможна работа с титановыми заготовками большой толщины.

Но гидроабразивная резка достаточно дорогостоящая процедура, в этом заключается ее единственный недостаток.

Лазерная резка титановых листов и заготовок предусматривает использование лазерного луча высокой мощности, который, благодаря очень высоким температурам, продвигает металл. При этом во время процесса температурное воздействие оказывается только на место разреза, но не на сам металл в целом, благодаря чему заготовка не деформируется. В итоге, разрез получается идеально ровным, с точностью реза до 0,05 мм, дополнительная обработка не требуется. Во время раскройки остается минимум отходов, и скорость процесса достаточно высокая. Метод отличается не только высоким качеством, но и надежностью – при лазерной резке не бывает брака, к тому же благодаря компьютерной программе можно рассчитать самый оптимальный вариант расклада.

Фрезерование титановых изделий: особенности обработки

Фрезеровка – это процесс воздействия на металл специальными инструментами – фрезами – с целью придать заготовке желаемую форму. При этом, используя профессиональное оборудование, можно добиться высокой точности исполнения, изготовить большое количество идеально точных одинаковых элементов.

Чтобы фрезеровка титановых изделий была качественной, рекомендуется придерживаться некоторых советов:

  1. Сохраняйте небольшую площадь контакта. Одна из особенностей данного металла – плохая теплопроводность. Во время работы с данным металлом основной процент тепла передается на рабочий инструмент.
  2. Используйте фрезы с большим количеством зубьев (в идеале – десять и более). Это позволит устранить необходимость снижения подачи на зуб, и увеличит производительность.
  3. При фрезировке формируйте стружку по принципу «от толстой к тонкой», т.е. начинайте работу на максимальной толщине среза, постепенно доводя к минимальной. Таким образом толстая стружка на входе будет поглощать образовавшиеся тепло, а тонкая стружка на выходе не будет налипать.
  4. Выполняйте резание по дуге. Это не только увеличит срок службы инструмента, но и предотвратит резку рывками, обеспечит постепенное увеличение силы резания.
  5. На каждом выходе инструмента из материала снимайте 45-градусную фаску. Это позволит снизить резкость перехода и избежать повреждения поверхности заготовок.
  6. Отдавайте предпочтение фрезам, у которых большой вспомогательный задний угол. Таким образом, первая область кромки будет принимать на себя нагрузку а следующая увеличит зазор. В результате увеличивается и производительность, и срок службы инструмента.
  7. Пользуйтесь инструментом меньшего диаметра чем паз. При фрезеровке титановых изделий поглощается большое количество тепла. Для охлаждения фреза требуется пространство. В идеале, диаметр фрезы не должен превышать 70% диаметра будущего паза.

Сверление

Сверление – это разновидность мехобработки материала, при котором, используя специальный вращающийся режущий инструмент, получают отверстия разного диаметра. При сверлении титана мелкая стружка постоянно налипает на рабочую поверхность инструмента, что причиняет массу неудобств в работе. Для того, чтобы не допустить поломку инструмента, отводящие каналы сверла нужно постоянно и своевременно очищать. При этом рекомендуется использовать сверла из твердых, прочных материалов.

Шлифовка

Шлифовка относится к чистовому виду механической обработки титана. В ходе процесса с поверхности детали или заготовки снимается тонкий слой металла, для чего используются абразивные вещества. Для титановых изделий это особенно важно ввиду специфических свойств самого материала, а также титановых сплавов. На их поверхности часто образуются различные дефекты. Кроме того, на титановых сплавах часто появляются прижоги. Все это сказывается на усталостных характеристиках готовых изделий, снижает их качество.

Чтобы минимизировать риск отрицательного результата, шлифовку титановых изделий и заготовок осуществляют на низких оборотах станка, используя при этом специальные режимы. Как вариант, повысить прочность готового изделия можно с помощью пластического деформирования. После шлифования заготовку обязательно проверяют на наличие любых дефектов, включая прижоги.

На последнем этапе шлифования также можно использовать кремниевые круги или непрерывные абразивные ленты, которые сделают металлическую поверхность идеально ровной и гладкой.

Основные проблемы, которые могут возникнуть при механической обработке титана

Механическая обработка титана – сложный, технологический процесс. Основные проблемы, с которыми может столкнуться исполнитель – это низкая теплопроводность металла, а также его высокая склонность к налипанию и задиранию. Поэтому с целью минимизации неудобств во время мехобработки титановых заготовок рекомендуется использовать охлаждающие жидкости.

Еще одна проблема, с которой часто сталкиваются во время механообработки, это вибрации. Для того, чтобы ее предотвратить, рекомендуется повышать жесткость закрепления деталей. Например, хорошо зарекомендовало себя многоступенчатое крепление, при этом заготовки следует расположить максимально близко к шпинделю. Это также частично снизит вибрацию.

Существенная опасность деформационного упрочнения готовых деталей может возникнуть из-за большого выброса тепла в зоне резания. Титановые сплавы, как и сам металл в чистом виде, сохраняет прекрасные показатели прочности и твердости даже в условиях высокой температуры, в результате чего рабочий инструмент подвергается мощному воздействию и невероятной нагрузке. Для успешной работы и высокой эффективности рекомендуется использовать только качественное оборудование популярных производителей.

Немаловажен и выбор правильного режима работы, а также корректная настройка рабочих инструментов. К примеру, если в корпус фрезы неправильно установить пластины, все режущие кромки могут достаточно быстро выйти из строя.

Компания Профлазермет предлагает доступные цены на механическую обработку титана и прочих металлов современными способами. Каждому своему клиенту мы гарантируем:

  • помощь при составлении технического задания, индивидуальную разработку чертежей;
  • кратчайшие сроки выполнения заказов;
  • профессиональный подход к каждому заказу;
  • гарантию на все выполненные работы.

Высокотемпературная прочность увеличивает силу резания при механической обработке. Высокое упрочнение и большая скорость деформации также увеличивают энергию, необходимую для удаления стружки, что приводит к более высоким температурам. Титан реагирует практически со всеми материалами при высоких температурах, приводя к химическому износу режущих инструментов.

Кроме того, низкая теплопроводность титановых сплавов является одним из факторов, ограничивающих производительность. В большинстве других материалов тепло передается в стружку. Однако при низкой теплопроводности титана тепло переходит в инструмент. Твердость карбида снижается по мере повышения температуры, что означает, что скорость резания и срок службы инструмента ниже для обработки титана по сравнению со сталью. Когда скорость резания увеличивается с 50 м / мин. до 100 м / мин. в титане анализ FEA предсказывает повышение температуры на 250ºC.


Поэтому для оптимизации производительности инструменты должны надлежащим образом охлаждаться. Правильный расход охлаждающей жидкости означает улучшенный срок службы инструмента и более высокие максимальные эффективные скорости резания. Если он не охлаждается должным образом, инструмент быстро нагревается. Это может сократить срок службы инструмента и повлиять на чистоту поверхности из-за появления наростов на режущей кромке, которые возникают, когда материал заготовки липнит на режущую кромку.


Традиционное внешнее охлаждение, предназначенное для обработки, часто попадает за зону резания, а заказные решения высокого давления (1000 мм на квадратный метр или выше) могут стоить десятки тысяч рублей. Альтернативой является поставка охлаждающей жидкости через внутренние отверстия.
При таком подходе СОЖ попадает туда, где инструмент режет заготовку, обеспечивая эффективную подачу хладагента, теплопередачу и смазывающую способность. Испытания жизненного цикла инструмента, сравнивающие внешнее охлаждение с внутренней подачей СОЖ на одинаковых геометриях режущих кромок, показывают более чем в два раза увеличенный срок службы инструмента при внутренней подачи.

При токарных испытаниях при 150 sfm, сравнивающих этот инструмент с внешней подачей СОЖ при обработке титана, пластины Beyond Blast при давлении охлаждающей жидкости 100 фунтов на квадратный дюйм обеспечивали на 25 процентов больше срока службы инструмента, чем стандартные пластины с использованием СОЖ высокого давления 1000 psi.


При использовании вставных круглых фрезерных пластин, внутренняя подача обеспечивает более чем в 2,5 раза лучший срок службы инструмента. Увеличение скорости также сильно влияет на срок службы инструмента. Простое увеличение скорости от 150 до 187 SFF на стандартном инструменте уменьшает срок службы инструмента на 60 процентов. С помощью внутренних отверстий для охлаждающей жидкости срок службы инструмента уменьшался всего на 23 процента при увеличении скорости. Срок службы этих фрезерных инструментов на более высокой скорости был почти в два раза больше, чем стандартные инструменты на низкой скорости. Это связано с эффективным регулированием температуры, обеспечиваемым этим подходом к доставке хладагента.


Шпиндельные соединения


В системном подходе важна также роль шпинделя. Обрабатывающие устройства испытывают трудности при достижении высоких скоростей удаления металла, учитывая низкую скорость резания и высокие силы резания, характерные для титана. На протяжении многих лет производители станков улучшали жесткость и демпфирование на шпинделях и станочных конструкциях. Шпиндели спроектированы с высоким крутящим моментом при низких скоростях вращения. Хотя все эти достижения повышают производительность, соединение шпинделя часто остается слабым звеном.В большинстве случаев соединение инструмента-шпинделя определяет, сколько материала может быть удалено в данной операции.


Высокопроизводительная обработка обычно характеризуется использованием высоких подач и агрессивной глубиной обработки. Благодаря постоянным достижениям в режущих инструментах существует потребность в шпиндельном соединении, которое лучше использует доступную мощность станка.

За последние несколько десятилетий несколько последних типов шпиндельного соединения были разработаны или оптимизированы. Благодаря хорошей цене / выгодной позиции конусность 7/24 ISO стала одной из самых популярных систем на рынке. Однако конструкция имеет ряд ограничений, связанными с точностью на высоких скоростях. Как правило, конус шпинделя начинает прокручиваться от центробежной силы начиная от скорости вращения шпинделя в 20000 об / мин. Это дает погрешности обработки,ведь конус начинает терять контакт, позволяя инструменту перемещаться вверх по шпинделю.

Конструкция Kennametal, которая недавно был улучшена для обработки титана, представляет собой интерфейс инструмента-шпинделя «KM», который закрепляет держатель инструмента с помощью шарового механизма, который действует на поверхность отверстия. В новой KM4X-системе улучшение связано с ограничением изгибов конструкции, что важно при фрезеровании материалов с высокой силой, таких как титан.

В торцевых фрезерованиях, где длительность проецирования длинна, ограничивающим фактором является этот изгиб. Новая система KM4X обеспечивает высокую силу зажима и сопротивление помехам для обеспечения высокой жесткости и высокой изгибающей способности для повышения производительности при обработке титановых сплавов.


Максимизация динамической жесткости системы

При механической обработке с установками с удлиненной длиной могут возникать нежелательные регенеративные колебания (вибрации) и вызывать плохую обработку поверхности, проблемы с контролем размеров и преждевременный износ инструмента. Технологи часто вынуждены сокращать параметры резания, чтобы избежать вибраций, уменьшая производительность.

Это важно, когда волнистость на заготовке, оставленной предыдущим проходом, вызывает колебания сил резания из-за изменения толщины стружки на следующей операции. Это изменение силы резания затем оставляет больше волнистости на заготовке, вызывая большее изменение сил резания, что приводит к регенеративной вибрации. Амплитуда вибрации растет и может достигать уровней, где инструмент отскакивает от заготовки или вызывает катастрофические отклонения.

Способ уменьшить вибрацию и поддерживать высокие скорости удаления металла - увеличить динамическую жесткость системы. В то время как статическая жесткость инструмента может быть увеличена за счет использования более коротких настроек инструмента или более крупных диаметров инструмента, система инструментов из Kennametal обеспечивает средства для повышения динамической жесткости за счет использования пассивного динамического поглотителя. Система разработана так, что внутренняя масса будет вибрировать на частоте, близкой к собственной частоте наиболее доминирующего режима вибрации системы. Движение внутренней массы рассеивает энергию для предотвращения вибраций.

Каждый станковый инструмент имеет свои собственные динамические колебания, но настраиваемые адаптеры позволяют наладчику настраивать пассивный демпфер, настраивая инструмент для конкретной сигнатуры станка, даже если эти колебания меняется со временем. Эта настройка также важна, когда используются фрезы с различными массами, в которых может изменяться собственная частота системы.


В тестах металлообработки наблюдалась хорошая корреляция между динамической жесткостью и уровнями вибрации, измеренными на корпусе шпинделя. Вибрации могут не только вызывать преждевременный сбой инструмента, но и уменьшать срок службы подшипника шпинделя. Предотвращение распространения вибрации через машину будет способствовать увеличению срока службы компонентов и повышению точности работы машины с течением времени.Другими словами, использование системного подхода к обработке титана дает преимущества, превышающие срок службы инструмента. Другие преимущества включают более последовательное и улучшенное качество деталей, улучшенную производительность шпинделя и более высокую точность станков.

Концепции сверления

Широкий запас противовесов заставляет действовать против маятникового движения сверла.

Сверление в титане - еще одна сложная задача. Благодаря механическим и физическим свойствам этого материала создание отверстий высокого качества с точки зрения прямолинейности, цилиндричности и округлости является сложной задачей. Высокие динамические силы обычно связаны с быстрой сегментацией стружки, которая в случае титана происходит при очень низких скоростях резания.

В сверле Y-Tech фирмы Kennametal используется неравномерное расстояние между канавками и канавками для управления этими динамическими силами, а также маятниковое движение сверла. Положение режущих кромок создает радиальную силу, уравновешенной противоположной канавкой, прижатой к стенке отверстия. Это распределение сил уменьшает динамическое воздействие силы, что приводит к лучшей округлости и цилиндричности просверленного отверстия.

Титановые сплавы широко используются в современ­ной технике, поскольку их высокие механические свойства и коррозионная стойкость сочетаются с малым удельным весом. Разработаны сплавы различного состава и свойст­ва, например: технически чистый титан (ВТ1, ВТ2), сплавы систем титан-алюминий (ВТ5), титан-алюми­ний-марганец (ВТ4, ОТ4), титан-алюминий-хром- молибден (ВТЗ) и др. По общей классификации трудно­обрабатываемых материалов титановые сплавы сведены в VII группу (табл. 11.11).

Так же, как нержавеющие и жаропрочные стали и сплавы, титановые сплавы имеют ряд особенностей, обусловливающих их низкую обрабатываемость.

1. Малая пластичность, характеризуемая высоким коэффициентом упрочнения, примерно в два раза большим, чем у жаропрочных материалов. Вместе с тем механические характеристики титановых сплавов по сравнению с жаропрочными меньше. Пониженные пластические свойства титановых сплавов в процессе их деформации способствуют развитию опережающих микро- и макротрещин.

Образуемая стружка по внешнему виду напоминает сливную, имеет трещины, разделяющие ее на очень слабо деформированные элементы, прочно связан­ные тонким и сильно деформированным контактным слоем. Образование такой стружки объясняется тем, что с увеличением скорости пластическая деформация при высоких температуре и давлении протекает в основном в контактном слое, не затрагивая срезаемый слой. Поэтому при высоких скоростях резания образуется не сливная, а элементная стружка.

Углы сдвига при резании титановых сплавов достигают 38...44°, в этих условиях при скоростях резания, больших 40 м/мин, возможно образование стружки с коэффициен­том укорочения K l < 1, т. е. стружка имеет большую длину, чем путь резания. Подобное явле­ние объясняется высокой химической активностью титана.

Пониженная пластичность приводит к тому, что при обработке титановых сплавов сила Р Z примерно на 20 % ниже, чем при обработке сталей, а силы Р у и Р х - выше. Это различие указывает на характерную особен­ность титановых сплавов - силы резания на задней по­верхности при их обработке относительно больше, чем при обработке сталей. Как следствие, при увеличении износа силы резания, особенно Ру, резко возрастают.

2. Высокая химическая активность к кислороду, азоту, водороду. Это вызывает интенсивное охрупчивание поверхностного слоя сплавов вследствие диффузии в него атомов газов при повышении температуры. Насыщенная атмосферными газами стружка теряет пластичность и в этом состоянии не подвергается обычной усадке.

Высокая активность титана по отношению к кислороду и азоту воздуха в 2…3 раза снижает площадь контакта стружки с передней поверхностью инструмента, что не наблюдается при обработке конструкционных сталей. Вместе с тем окисление контактного слоя стружки повы­шает ее твердость, увеличивает контактные напряжения и температуру резания, а также повышает интенсивность изнашивания инструмента.

3. Титановые сплавы имеют чрезвычайно плохую тепло­проводность, более низкую, чем у жаропрочных сталей и сплавов. Как следствие, при резании титановых сплавов возникает температура, более чем в 2 раза превышающая уровень температур при обработке стали 45.

Высокая температура в зоне резания вызывает интенсивное наростообразование, схватывание обрабатываемо­го материала с материалом инструмента и появление задиров на обработанной поверхности.

4. Вследствие содержания в титановых сплавах нитри­дов и карбидов материал режущего инструмента в сильной степени подвержен абразивному воздействию. Однако при повышении температуры титановые сплавы сильнее снижают свою прочность, чем нержавеющие и жаропроч­ные стали и сплавы. Обработка резанием по корке многих кованых, прессованных или литых заготовок из титановых сплавов затруднена дополнительным абразивным воз­действием на режущие кромки инструмента неметалли­ческих включений, оксидов, сульфидов, силикатов и много­численных пор, образующихся в поверхностном слое. Неоднородность структуры снижает виброустойчивость процесса обработки титановых сплавов. Эти обстоятельст­ва, а также концентрация значительного количества теплоты в пределах небольшой площадки контакта на передней поверхности приводят к преобладанию хрупкого изнашивания с периодическим скалыванием по передней и задней поверхностям и выкрашиванию режущей кромки. При высоких скоростях резания интенсифицируется теп­ловое изнашивание, на передней поверхности резца разви­вается лунка. Во всех случаях, однако, лимитирующим является износ его задней поверхности.

Уровень скорости резания V T при обработке титановых сплавов в 2,5…5 раз ниже, чем при обработке стали 45 (см. табл. 11.11).

5. При обработке титановых сплавов особое внимание необходимо уделять вопросам техники безопасности, так как образование тонкой стружки и тем более пыли может привести к ее самовоспламенению и интенсивному горе­нию. Кроме того, пылеобразная стружка вредна для здоровья. Поэтому не допускается работа с подачами менее 0,08 мм/об, использование затупленного инстру­мента с износом более 0,8...1,0 мм и со скоростями резания более 100 м/мин, а также скопление стружки в большом объеме (исключение делается для сплава ВТ1, обработка которого разрешается при скоростях резания до 150 м/мин).

При обработке титановых сплавов широко используют­ся технологические среды (табл. 11.12).

Правильный выбор СОТС может повысить период стойкости инструмента в 1,5…3 ра­за, снизить высоту микронеровностей в 1,5…2 раза. Харак­терной особенностью использования СОТС при обработке титановых сплавов является малая эффективность при­садок, содержащих серу, азот, фосфор, поскольку эти элементы хорошо растворимы в титане. Гораздо более эффективны в качестве присадок галогены, и в первую очередь йод.