Температура кипения горючих газов метан пропан бутан. Сжиженный газ

Особенности использования в автомобильном газобаллонном оборудовании сжиженного нефтяного газа (СНГ) в виде смеси пропана с бутаном и его аппонента сжиженного природного газа (СПГ) метана.

В широком применении для автомобилей два состава газа – пропан и метан. Какой из них лучше, дешевле, технологичнее и надежнее? Давайте разберемся, чтобы после прочтения не осталось сомнений.

Оборудование для метана используют всего на 25% автомобилей, на остальные 75% автомобилей ставят пропан. При этом метан часто ставят на коммерческом транспорте, где выбор делает не водитель, а организация собственник транспортного средства. Разберем причины такого соотношения на рынке ГБО.

Автоблогер разбирает особенности пропана и метана в пятнадцатиминутном видео: что лучше для авто, основная разница

Особенности пропан-бутана (СНГ)

Пропан - углеродный газ, побочный продукт при добыче нефти. Не имеет запаха, прозрачен и безвреден для человека. В него также добавляются одоранты, чтобы при утечках его могли почувствовать. Химическая формула - C 3 H 8 .

На заправках мы видим надпись «пропан–бутан». Бутан - это также углеродный газ, который выделяется при схожих условиях. Его смешивают с пропаном для того, чтобы добиться нужного октанового числа. Причем в различные время года составы меняются: зимой больше пропана, а летом бутана.

Хранится он в баллонах в автомобиле в сжиженном виде. То есть он жидкий, а не газообразный - «плюхается» в баллоне. Также большим преимуществом является рабочее давление, которое составляет всего 14 атмосфер. Для него нужны емкости из более легкого металла и стенки баллона намного тоньше. Сейчас наибольшее распостранение получили тороидальные баллоны в виде бублика, которые помещяются на место запаски. При этом баллон не занимает места в багажнике, но приходится жертвовать запасным колесом.

На среднестатистическом оборудовании при полной заправке можно проехать 650…850 километров, что в четыре раза больше, чем у оппонента.

Расход на пропане 11…13 литров на 100 км на среднестатистическом автомобиле с двигателем 1.6 литра на 4 поколении ГБО.

Оборудование стоит в два раза дешевле. По нашему опыту девять из десяти компаний по установке газового оборудования специализируются на пропане.

Много заправок. Также большим плюсом является то, что заправок на пропане в десятки раз больше.

Потеря мощности двигателя ниже, около 5…10%.

Плюсы пропана:

  • Дешевое оборудование.
  • Очень много компаний, которые обслуживают и устанавливают.
  • Низкое давление.
  • Хранится в сжиженном виде.
  • Легкое и компактное оборудование, можно установить в гнездо для запаски.
  • Больший пробег.
  • Меньшая потеря мощности около 5…10%.

Минусы пропана:

  • Пропан дороже метана на примерно 3 рубля за литр. Пропап стоит 17 рублей против 14 за литр метана.
  • Более взрывоопасен, чем метан. При повреждении баллона не так быстро испаряется в атмосферу.

Пропан хоть и стоит чуть дороже, но обладает большим количеством плюсов и распостраненностью заправок.

Совместимость СНГ и СПГ с последними поколениями ГБО

И напоследок об еще одном минусе метана - несовместимости с пятым и шестым поколениями ГБО. Пропан может с этими поколениями работать, а метан нет и скорее всего не сможет.

В 5 и 6 поколениях газ подается жидким в систему впрыска топлива и схож с бензином. Пропан хранится в баллонах в жидкой форме, а метан в газообразном виде. Поэтому установка метана возможна только до 4 поколения оборудования. Последние поколения дают расход примерно равный расходу бензина. Мощность при этом практически не теряется. Двигатель можно запускать сразу на газе даже при минусовых температурах.

Сжиженный углеводородный газ (СУГ) — это углеводороды или их смеси, которые при нормальном давлении и температуре окружающего воздуха находятся в газообразном состоянии, но при увеличении давления на относительно небольшую величину без изменения температуры переходят в жидкое состояние.

Сжиженные газы получают из попутных нефтяных газов, а также газоконденсатных месторождений. На перерабатывающих заводах из них извлекают этан, пропан, а также газовый бензин. Наибольшую ценность для отрасли газоснабжения имеют пропан и бутан. Их главное преимущество в том, что их легко хранить и перевозить в виде жидкости, а использовать в виде газа. Другими словами, для перевозки и хранения сжиженных газов используются плюсы жидкой фазы, а для сжигания — газообразной.

Сжиженный углеводородный газ получил широкое применение во многих странах мира, включая Россию, для нужд промышленности, жилищного и коммунально-бытового сектора, нефтехимических производств, а также в качестве автомобильного топлива.

Молекула пропана состоит из трех атомов углерода и восьми атомов водорода

Пропан

Для систем газоснабжения, эксплуатируемых в России, наиболее подходящим является технический пропан (C 3 H 8), так как он имеет высокую упругость паров вплоть до минус 35°C (температура кипения пропана при атмосферном давлении — минус 42,1°C). Даже при низких температурах из баллона или газгольдера, наполненного пропаном, легко отбирать нужное количество паровой фазы в условиях естественного испарения. Это позволяет устанавливать газовые баллоны со сжиженным пропаном на улице зимой и отбирать паровую фазу при низких температурах.

Бутан

При сгорании молекулы бутана в реакцию вступают четыре атома углерода и десять атомов водорода, что объясняет его большую теплотворную способность по сравнению с пропаном

Бутан (C 4 H 10) — более дешевый газ, но отличается от пропана низкой упругостью паров, поэтому применяется только при положительных температурах. Температура кипения бутана при атмосферном давлении — минус 0,5°C.

Температура газа в резервуарах системы автономного газоснабжения должна быть положительной, иначе испарение бутановой составляющей СУГ будет невозможно. Для обеспечения температуры газа выше 0°C используется геотермальное тепло: газгольдер для частного дома устанавливается подземно.

Смесь пропана и бутана

В коммунально-бытовой сфере используется смесь пропана и бутана технических (СПБТ), в быту называемая пропан-бутаном. При содержании бутана в СПБТ свыше 60% бесперебойная работа резервуарных установок в климатических условия России невозможна. В таких случаях для принудительного перевода жидкой фазы в паровую применяются испарители СУГ .

Особенности и свойства СУГ

Свойства сжиженных газов влияют на меры безопасности, а также конструктивные и технические особенности оборудования, в котором они хранятся, перевозятся и используются.

Отличительные особенности сжиженных газов:

  • высокая упругость паров ;
  • не имеют запаха . Для своевременного выявления утечек сжиженным газам придают специфический запах — производят одоризацию этилмер-каптаном (C 2 H 5 SH);
  • невысокие температуры и пределы воспламеняемости. Температура воспламенения бутана — 430°C, пропана — 504°C. Нижний предел воспламеняемости пропана — 2,3%, бутана — 1,9%;
  • пропан, бутан и их смеси тяжелее воздуха . В случае утечки сжиженный газ может скапливаться в колодцах или подвалах. Запрещается устанавливать оборудование, работающее на сжиженном газе, в помещениях подвального типа;
  • переход в жидкую фазу при увеличении давления или уменьшении температуры ;
  • высокая теплотворная способность . Для сжигания СУГ необходимо большое количество воздуха (для сжигания 1 м³ газовой фазы пропана необходимо 24 м³ воздуха, а бутана — 31 м³ воздуха);
  • большой коэффициент объемного расширения жидкой фазы (коэффициент объемного расширения жидкой фазы пропана в 16 раз больше, чем у воды). Баллоны и резервуары заполняются не более чем на 85% геометрического объема. Заполнение более чем на 85% может привести к их разрыву, последующему быстрому истечению и испарению газа, а также воспламенению смеси с воздухом;
  • в результате испарения 1 кг жидкой фазы СУГ при н. у. получается 450 литров паровой фазы. Другими словами, 1 м³ паровой фазы пропан-бутановой смеси имеет массу 2,2 кг;
  • при сгорании 1 кг пропан-бутановой смеси выделяется около 11,5 кВт×ч тепловой энергии;
  • сжиженный газ интенсивно испаряется и, попадая на кожу человека, вызывает обморожение.


Зависимость плотности пропан-бутановой смеси от ее состава и температуры

Таблица плотностей сжиженной пропан-бутановой смеси (в т/м³) в зависимости от ее состава и температуры

−25 −20 −15 −10 −5 0 5 10 15 20 25
P/B, %
100/0 0,559 0,553 0,548 0,542 0,535 0,528 0,521 0,514 0,507 0,499 0,490
90/10 0,565 0,559 0,554 0,548 0,542 0,535 0,528 0,521 0,514 0,506 0,498
80/20 0,571 0,565 0,561 0,555 0,548 0,541 0,535 0,528 0,521 0,514 0,505
70/30 0,577 0,572 0,567 0,561 0,555 0,548 0,542 0,535 0,529 0,521 0,513
60/40 0,583 0,577 0,572 0,567 0,561 0,555 0,549 0,542 0,536 0,529 0,521
50/50 0,589 0,584 0,579 0,574 0,568 0,564 0,556 0,549 0,543 0,536 0,529
40/60 0,595 0,590 0,586 0,579 0,575 0,568 0,562 0,555 0,550 0,543 0,536
30/70 0,601 0,596 0,592 0,586 0,581 0,575 0,569 0,562 0,557 0,551 0,544
20/80 0,607 0,603 0,598 0,592 0,588 0,582 0,576 0,569 0,565 0,558 0,552
10/90 0,613 0,609 0,605 0,599 0,594 0,588 0,583 0,576 0,572 0,566 0,559
0/100 0,619 0,615 0,611 0,605 0,601 0,595 0,590 0,583 0,579 0,573 0,567

T — температура газовой смеси (среднесуточная температура воздуха); P/B — соотношение пропана и бутана в смеси, %

Внутренний рынок РФ
Заявки принимаются до 25 числа текущего месяца на поставки в следующем месяце. Цена формируется с 25 числа текущего месяца до первого числа следующего.

Газы углеводородные сжиженные

Газы углеводородные сжиженные (пропан-бутан, в дальнейшем СУГ) — смеси углеводородов, которые при нормальных условиях (атмосферное давление и Т воздуха = 0 ° С) находятся в газообразном состоянии, а при небольшом повышении давления (при постоянной температуре) или незначительном понижении температуры (при атмосферном давлении) переходят из газообразного состояния в жидкое.
Основными компонентами СУГ являются пропан и бутан. Пропан-бутан (сжиженный нефтяной газ, СНГ, по-английски — liquified petroleum gas, LPG) — это смесь двух газов . В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток (пентан, гексан).
Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти.
С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до продажи (отпуска) потребителям. Потребителям СУГ доставляется в баллонах или автоцистернами.
В сосудах (цистернах, резервуарах, баллонах) для хранения и транспортировки СУГ одновременно находится в 2-х фазах: жидкой и парообразной. СУГ хранят, транспортируют в жидком виде под давлением, которое создаётся собственными парами газа. Это свойство делает СУГ удобными источниками снабжения топливом коммунально-бытовых и промышленных потребителей, т.к. сжиженный газ при хранении и транспортировке в виде жидкости занимает в сотни раз меньший объем, чем газ в естественном (газообразном или парообразном) состоянии, а распределяется по газопроводам и используется (сжигается) в газообразном виде.
Сжиженные углеводородные газы, подаваемые в населенные пункты, должны соответствовать требованиям ГОСТ 20448-90. Для коммунально-бытового потребления и промышленных целей стандартом предусматривается выпуск и реализация СУГ трех марок:
ПТ — пропан технический;
СПБТ — смесь пропана и бутана техническая;
БТ — бутан технический.

Марка Наименование Код ОКП
ПТ Пропан технический 02 7236 0101
СПБТ Смесь пропана и бутана технических 02 7236 0102
БТ Бутан технический 02 7236 0103
Наименование показателя Норма для марки Метод испытания
ПТ СПБТ БТ
1. Массовая доля компонентов, %: По ГОСТ 10679
сумма метана, этана и этилена Не нормируется
сумма пропана и пропилена, не менее 75 Не нормируется
сумма бутанов и бутиленов, не менее Не нормируется 60
не более 60
2. Объемная доля жидкого остатка при 20 °С, %, По п. 3.2
не более 0,7 1,6 1,8
3. Давление насыщенных паров, избыточное, МПа, при температуре: По п. 3.3 или ГОСТ 28656
плюс 45 °С,не более 1,6 1,6 1,6
минус 20 °С,не менее 0,16
4. Массовая доля сероводорода и меркаптановой серы, %, не более 0,013 0,013 0,013 По ГОСТ 22985
в том числе сероводорода, не более 0,003 0,003 0,003 По ГОСТ 22985 или ГОСТ 11382
5. Содержание свободной воды и щелочи Отсутствие По п. 3.2
6. Интенсивность запаха, баллы, не менее 3 3 3 По ГОСТ 22387.5 и п.3.4 настоящего стандарта

Применение СУГ по маркам связано с наружными температурами, от которых зависит упругость(давление) паров сжиженных газов, находящихся в баллонах на открытом воздухе или в подземных резервуарах.
В зимних условиях при низких температурах, для создания и поддержания необходимого давления в системах газоснабжения, в составе сжиженного газа должен преобладать более легко испаряющийся компонент СУГ- пропан. Летом основной компонент в СУГ — бутан.

Основные физико-химические свойства компонентов сжиженных углеводородных газов и продуктов их сгорания:
температура кипения (испарения) при атмосферном давлении для пропана — 42 0 С, для бутана — 0,5 0 С;
Это означает, что при температуре газа выше указанных величин происходит испарение газа, а при температуре ниже указанных величин происходит конденсация паров газа, т.е. из паров образуется жидкость (конденсат сжиженного газа). Т.к. пропан и бутан в чистом виде поставляются редко, то приведенные температуры не всегда соответствуют температуре кипения и конденсации применяемого газа. Применяемый в зимнее время газ обычно нормально испаряется при температуре окружающего воздуха до минус 20 0 С. Если же заводы-изготовители поставят газ с повышенным содержанием бутана, то конденсация паров газа может быть и в летнее время при небольших заморозках.
низкая температура воспламенения при атмосферном давлении:
для пропана — 504-588 0 С, для бутана — 430-569 0 С;
Это означает, что воспламенение(вспышка) может произойти от нагретых, но еще не светящихся предметов, т.е. без наличия открытого огня.
низкая температура самовоспламенени я при давлении 0,1 МПа (1 кгс/см 2 )
для пропана — 466 0 , для бутана — 405 0 С;
высокая теплота сгорания (количество тепла, которое выделяется при сжигании 1 м 3 паров газа):
для пропана 91-99 МДж/м 3 или 22-24 тыс.ккал,
для бутана 118-128 МДж/м 3 или 28-31 тыс.ккал.
низкие пределы взрываемости (воспламеняемости):
пропана в смеси с воздухом 2,1-9,5 об.%,
бутана в смеси с воздухом 1,5-8,5 об.%,
смеси пропана и бутана с воздухом 1,5-9,5 об.%.
Это означает, что газовоздушные смеси могут воспламеняться (взрываться) только в том случае, если содержание газа в воздухе или кислороде находится в определенных пределах, вне которых эти смеси без постоянного притока (наличия) тепла или огня не горят. Существование этих пределов объясняются тем, что по мере увеличения содержания в газовоздушной смеси воздуха или чистого газа уменьшается скорость распространения пламени, увеличиваются тепловые потери и горение прекращается.
С увеличением температуры газовоздушной смеси пределы взрываемости (воспламеняемости) расширяются.
плотность паров газа (смеси пропана и бутана) — 1,9-2,58 кг/м 3 ;
Пары СУГ значительно тяжелее воздуха (плотность воздуха 1,29 кг/м 3 ) и собираются в нижней части помещения, где может образоваться взрывоопасная газовоздушная смесь при очень малых утечках газа. При затекании паров СУГ (в виде стелющегося тумана или прозрачного мерцающего облака) в не проветриваемые подвалы, устройства канализации, заглубленные помещения они могут оставаться там очень долго. Часто это происходит при утечках газа из подземных резервуаров и газопроводов. Особенно опасно то, что внешним осмотром такую утечку обнаружить нельзя, т.к. газ не всегда выходит на поверхность земли, а распространяясь под землей может попадать в канализацию или подвалы на большом удалении от места утечки.
плотность газа в жидком состоянии — О,5-0,6 кг/л.
коэффициент объемного расширения жидкой фазы СУ Г- в 16 раз больше, чем у воды. При повышении температуры газа его объём значительно увеличивается, что может привести к разрушению (разрыву) стенок сосуда с газом.
— для полного сгорания паров СУГ необходимо
на 1м 3 паров пропана — 24м 3 воздуха или 5,0 м 3 кислорода
на 1м 3 паров бутана — 31м 3 воздуха или 6,5 м 3 кислорода.
объем паров газа с 1 кг пропана — 0,51 м 3 ,
с 1 л пропана — 0,269м 3 ,
с 1 кг бутана — 0,386м 3 ,
с 1 л бутана — 0,235м 3 .
максимальная скорость распространения пламени горящего пропана- 0,821м/с, бутана — 0,826 м/с.
СУГ бесцветны (невидимы) и большей частью не имеют сильного собственного запаха, следовательно, в случае их утечки в помещении может образоваться взрывоопасная газовоздушная смесь. Для того, чтобы своевременно обнаружить утечки газа, горючие газы подвергают одоризации, т. е. придают им резкий специфический запах.
В качестве одоранта используют технический этилмеркаптан.

Этилмеркаптан — легкоиспаряющаяся жидкость с резким неприятным запахом.

Этилмеркаптан — бесцветная, прозрачная, подвижная, легковоспламеняющаяся жидкость с резким отвратительным запахом. Запах этилмеркаптана обнаруживается в очень низких концентрациях (до 2*10 -9 мг/л). Этилмеркаптан растворим в большинстве органических растворителей, в воде растворяется слабо. В разбавленных растворах этилмеркаптан существует в виде мономера, при концентрировании формируются димеры преимущественно линейного строения за счет образования водородных связей S-H…S. Этантиол легко окисляется. В зависимости от условий окисления можно получить диэтилсульфоксид (C 2 H 5 ) 2 SO (действием кислорода в щелочной среде), диэтилдисульфид (C 2 H 5 )SS(C 2 H 5 ) (действием активированного MnO 2 или перекиси водорода) и другие производные. В газовой фазе при 400°C этилмеркаптан разлагается на сероводород и этилен. В природе этантиол используется некоторыми животными для отпугивания врагов. В частности, он входит в состав жидкости, вырабатываемой скунсом.

Получение.

Промышленный способ получения этилмеркаптана основан на реакции этанола с сероводородом при 300-350°C в присутствии катализаторов.

C 2 H 5 OH + H 2 S —> C 2 H 5 SH + H 2 O

Применение.

  • в качестве одоранта природного газа, пропан-бутановой смеси, а также других топливных газов. Практически все топливные газы почти не имеют запаха, добавка этилмеркаптана позволяет вовремя обнаружить утечку газа.
  • как промежуточный реагент при получении некоторых видов пластмасс, инсектицидов, антиоксидантов.

Предельно допустимая концентрация этилмеркаптана в воздухе рабочей зоны — 1 мг/м 3 . Специфический запах этилмеркаптана ощущается при ничтожно малых концентрациях его в воздухе.
Для придания запаха на заводах-изготовителях в СУГ добавляют этилмеркаптан в количестве 42-90 граммов на тонну жидкого газа, в зависимости от содержания в газе меркаптана серы.
Запах СУГ, имеющих низкие пределы взрываемости, должен ощущаться при наличии их в воздухе: ПТ — О,5 об.%, СПБТ — 0,4% об.%, БТ — 0,3% об.%.
Пары СУГ действуют на организм наркотически. Признаками наркотического действия являются недомогание и головокружение, затем наступает состояние опьянения, сопровождаемое беспричинной веселостью, потерей сознания. СУГ неядовит, но человек, находящийся в атмосфере с небольшим содержанием паров СУГ в воздухе, испытывает кислородное голодание, а при значительных концентрациях паров в воздухе может погибнуть от удушья.
Предельно допустимая концентрация в воздухе рабочей зоны (в перерасчете на углерод) паров углеводородов от 100 до 300 мг/м 3 . Для сравнения можно отметить, что подобная концентрация паров газа примерно в 15-18 раз ниже предела взрываемости.
При попадании жидкой фазы СУГ на одежду и кожные покровы вследствие ее моментального испарения происходит интенсивное поглощение тепла от тела, что вызывает обмораживание. По характеру воздействия обмораживание напоминает ожог. Попадание жидкой фазы на глаза может привести к потере зрения. Работая с жидкой фазой СУГ, нельзя надевать шерстяные и хлопчатобумажные перчатки, так как они не оберегают от ожогов (плотно прилегают к телу и пропитываются жидким газом). Необходимо пользоваться кожаными или брезентовыми рукавицами, прорезиненными фартуками, очками.
При неполном сгорании паров СУГ выделяется окись углерода (СО) — угарный газ , являющийся сильным ядом, вступающим в реакцию с гемоглобином крови и вызывающим кислородное голодание. Концентрация угарного газа в воздухе помещения от 0,5 до 0,8 об.% опасна для жизни даже при кратковременном воздействии. Наличие 1об.% угарного газа в воздухе помещения через 1-2 минуты вызывает смерть. По санитарным нормам величина предельно допустимой концентрации угарного газа в воздухе рабочей зоны 0,03 мг/литр.

Используемые источники
1. Физико-химические свойства сжиженных углеводородных газов для коммунально — бытового потребления согласно Г0СТ 20448-90.

На постсоветском пространстве термин «СУГ» обычно вызывает ассоциацию с пропаном-бутаном и его применением в качестве топлива для автономных систем газификации объектов. Однако в действительности сжиженный углеводородный газ - это куда более широкая линейка углеводородов, к которой помимо пропана и бутана можно отнести метан, этилен, изобутан и их смеси.

Терминология СУГ

В мировой практике сжиженный пропан-бутан принято называть нефтяным газом (СНГ), поскольку данные углеводороды являются побочными продуктами в процессе переработке нефти. В России к СНГ также принято относить легкое углеводородное сырье, вроде фракций бутилена и пропилена. Отдельную классификацию имеет жидкий природный газ. Его сокращенно называют СПГ или сжиженный метан, так как основу природного газа составляет СН4.

Несмотря на такое разделение, в государственной документации и стандартизации в основном применяется одно название - «Сжиженные углеводородные газы», под которое попадает как СНГ, так и СПГ. Хотя с учетом развития отрасли производства и сбыта сжиженного природного газа не исключено, что в скором будущем будут разработаны отдельные стандартны для хранения, транспортировки и эксплуатации СПГ.

В целом, основываясь на анализе химического состава, к СУГ корректно относить все продукты с углеводородной основой, начиная от синтетического жидкого топлива, этилена, изобутана и заканчивая популярной смесью пропана и бутана. Кстати, зачем смешивают данные компоненты, можно прочитать .

Свойства и способности сжиженных пропана, бутана и метана

Основное отличие СУГ от других видов топлива заключается в способности быстро менять свое состояние из жидкого в газообразное и обратно при определенных внешних условиях. К этим условиям относятся температура окружающей среды, внутреннее давление в резервуаре и объем вещества. Например, бутан сжижается при давлении 1,6 МПа, если температура воздуха равна 20 ºС. В то же время, температура его кипения всего -1 ºС, поэтому при серьезном морозе он будет сохранять жидкое состояние, даже если открыть вентиль баллона.

Пропан имеет более высокую энергоемкость, чем бутан. Температура его кипения равняется -42 ºС, поэтому даже в суровых климатических условиях он сохраняет способность к быстрому газообразованию.

Еще ниже температура кипения у метана. Он переходит в жидкое состояние при -160 ºС. Для бытовых условий СПГ практически не применяется, однако для импорта или транспортировки на серьезные расстояния способность природного газа сжижаться при определенной температуре и давлении имеют весомое значение.

транспортировка танкером

Любой сжиженный углеводородный газ отличается высоким коэффициентом расширения. Так, в заполненном 50-литровом баллоне содержится 21 кг жидкого пропана-бутана. При испарении всей «жидкости» образуется 11 кубометров газообразного вещества, что эквивалентно 240 Мкал. Поэтому такой вид топлива считается одним из самых эффективных и экономически выгодных для систем автономного отопления. Больше об этом можно прочитать .

При эксплуатации углеводородных газов необходимо учитывать их медленную диффузию в атмосферу, а также низкие пределы воспламеняемости и взрывчатости при контакте с воздухом. Поэтому с такими веществами нужно уметь правильно обращаться, учитывая их свойства и специальные требования безопасности.

Таблица свойств

Сжиженный углеводородный газ — чем он лучше других видов топлива

Индустрия применения СУГ достаточно широка, что обусловлено его теплофизическими характеристиками и эксплуатационными преимуществами по сравнению с другими видами топлива.

  • Транспортировка .
    Основная проблема доставки обычного газа в населенные пункты заключается в необходимости прокладки газовой магистрали, длина которой может достигать нескольких тысяч километров. Для транспортировки сжиженного пропан-бутана не требуется постройка сложных коммуникация. Для этого используются обычные баллоны или другие резервуары, которые перевозятся с помощью автомобильного, железнодорожного или морского транспорта на любые расстояния. Учитывая высокую энергоэффективность данного продукта (на одном баллоне СПБ можно месяц готовить еду для семьи), выгода очевидна.
  • Произведенные ресурсы .
    Цели применения сжиженных углеводородов аналогичны целям применения магистрального газа. К ним относятся: газификация частных объектов и населенных пунктов, производство электроэнергии посредством газогенераторов, эксплуатация двигателей транспортных средств, производство продуктов химической промышленности.
  • Высокая теплотворная способность .
    Жидкие пропан, бутан и метан очень быстро преобразуются в газообразное вещество, при сгорании которого выделяется большое количество тепла. Для бутана - 10,8 Мкал/кг, для пропана - 10,9 Мкал/кг, для метана - 11,9 Мкал/кг. Коэффициент полезного действия теплового оборудования, которое работает на СУГ, значительно выше КПД приборов, принимающих в качестве сырья твердотопливные материалы.
  • Простота регулировки .
    Подача сырья к потребителю может регулироваться как в ручном, так и в автоматическом режимах. Для этого существует целый комплекс приборов, отвечающих за регулировку и безопасность эксплуатации сжиженного газа.
  • Высокое октановое число .
    СПБ имеет октановое 120, что делает его более эффективным сырьем для двигателей внутреннего сгорания, чем бензин. При использовании пропана-бутана в качестве моторного топлива повышается межремонтный период для двигателя и сокращается расход смазочных материалов.
  • Сокращение расходов при газификации населенных пунктов .
    Очень часто СУГ применяют для устранения пиковой нагрузки на магистральные газораспределительные системы. Более того, выгоднее установить для удаленного населенного пункта автономную систему газификации, чем тянуть сеть трубопроводов. По сравнению с прокладкой сетевого газа удельные капиталовложения уменьшаются в 2-3 раза. Кстати, больше информации можно найти здесь, в разделе об автономной газификации частных объектов.

Подводя итоги статьи, можно сделать вывод, что сжиженные углеводороды обладают широким набором полезных свойств, что сделало их достаточно популярным продуктом во многих сферах промышленности. Для бытовых нужд пропан-бутан и вовсе является незаменимым сырьем, поскольку позволяет готовить пищу и обогревать жилье даже в самых отдаленных районах. Тем более что заказать его доставку совсем не сложно. Достаточно перейти по этой ссылке и выбрать необходимый продукт.

Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм.условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан.

Рассмотрим какие газы переходят в жидкое состояние при незначительном повышении давления при температуре О 0 С: этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Больше всего требуемым условиям соответствует

пропан и бутан.

Рассмотрим какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении: температура кипения метана – 161,5 0 С; этана – 88,5 0 С; пропана – 42,1 0 С; н-бутана – 0,5 0 С. Наиболее подходящими для практического применения являются пропан и бутан.

На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана – изобутан. Пропан изомера не имеет.

Структура и ф-ла Н-бутана СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в составе СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2.

Для получения СУГ используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.



Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6(пропилен) д.б. не < 93%. Содержание С2Н6 +С2Н4(этилен) не> 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не < 93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

Свойство СУГ.

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар(паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

3) Газа(когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировки и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа – это важнейший параметр по которому определяется рабочее давление в баллонах и резервуарах. Она изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров – избыточное давление.

В газообразном составе СУГ тяжелее воздуха в 1,5-2 раза. В жидком состоянии их плотность находится в пределах 510-580 кг/м 3 ,т.е. они почти в 2 раза легче воды. Вязкость СУГ очень мала,что облегчает транспортировку их по трубопроводам и благоприятствует утечкам.

СУГ имеют низкие пределы воспламенения в воздухе(2,3% для пропана, 1,7% для бутана). Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ.

Диффузия в атмосферу осуществляется очень медленно, особенно при отсутствии ветра. Они обладают невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана).

Возможно образование конденсата при снижении t-ры до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой обьем, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода). Поэтому при заполнении резервуаров и баллонов приходится учитывать возможность увеличения объема жидкости.

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку определенной величины, т.е. заполнять их не полностью. Величина паровой подушки для Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (в 2,5- 3,4 раза выше).

Сжиженные газы нетоксичны.У них отсутствует запах, цвет и вкус (как в жидком, так и в газообразном виде),что диктует необходимость их одоризации.

подземных резервуаров составляет 10%, для надземных и баллонов 15%.

Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:

Плотность газовой смеси заданного состава определяется:

Мольная доля i-ого компонента смеси

– Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где – молекулярная масса i-ого компонента, кг/кмоль

– Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

,

Где – плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

,

Где - абсолютное давление (МПа) и t-ра смеси.

– газовая постоянная смеси,(Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.

Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.

;

Объем газа, получается прииспарение смеси СУГ, м.б. найден по формуле:

– масса i-ого компонента смеси, кг

– молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость

низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания

Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

– нижний или верхний предел воспламенения i-ого компонента.

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.

Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1 МПа.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров столба жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар. При подземном размещении резервуара перепад температур может достигать 10-15 0 С. Давление газа в цистерне будет значительно ниже чем в резервуаре.

Для надежного слива необходимо, чтобы разность уровней компенсировала эту разность температур и соответственно разность давлений. Требуемая разность уровней составляет:

,

Где - давление газа в резервуаре, Па

– давление газа в цистерне

– плотность жидкой фазы СУГ, кг/м 3

Полученный мах. перепад необходим для начала слива. В дальнейшем t внутри резервуара начнет понижаться из-за поступления охлажденной жидкости из цистерны. Давление в подземной емкости станет меньше и разность уровней потребуется уже меньше. В начальный момент создать такую разность уровней почти невозможно, поэтому необходимо соединять паровые пр-ва в резервуары и цистерны. В этом случае давление выравнивается и слив пр-т с использованием полного гидростатического напора.

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:1.Простота схемы

2. Отсутствие механических агрегатов

3. Надежность работы всех устройств

4. Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

5. Малые затраты на ремонт и обслуживание

«-» метода:

1. Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

3. Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

Газонаполнительные станции

ГНС являются базой снабжения сжиженным газами и предназначены для приема, хранения и поставки потребителям сжиженных газов, поступающих железнодорожным, автомобильным, водным транспортом, и с предприятий где производится эти газы (газобензиновые заводы).

Объем резервуаров для хранения газа на станции не более 8000 м 3 . Обычно запас газа не превышает 300-600 тонн и производительность от 6000 до 24000 т/год.

На ГНС выполняются след.работы:

Приём сжиженных газов от поставщика

Слив сж.газов в свои хранилища

Хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

Слив неиспарившихся остатков из баллона и сж.газа из баллонов, имеющих к-л неисправности

Разлив сж.газа в баллоны, передвижные резервуары и автоцистерны

Приём пустых и выдача наполненных баллонов

Транспортировка сж.газов по внутренней сети трубопровод

Ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

Заправка автомобилей, работающих на сж.газе из автозаправочной колонки

Регазификация СУГ

Смешение паров газа с воздухом или низкокалорийными газами

Выдача паров сж.газа газовоздушных и газовых смесей в городские распределительные системы.

Для выполнения этих операций на ГНС имеются след. отделения и цеха:
-сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

База хранения СУГ,состоящая из надземных или подземных резервуаров,работающих под давлением, изотермич.резервуаров или подземных хранилищ в пустотах

Насосно-компрессорный цех для слива СУГ из ж/д цистерн в хранилища и и подача его для наполнения баллонов и автоцистерн

Цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

Склад суточного запаса пустых и заполненных баллонов

Колонки для заполнения автоцистерн

Коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих движение потоков жидкости и пара.

ГНС следует размещать вне населённых пунктов с подветренной стороны господствующих ветров, при этом следует соблюдать требуемые расстояния между ГНС и остальными сооружениями.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

По периметру территории ГНС ограждается ж/б забором выстой 3,4м. При емкости резервуаров > 200 м 3 , территория ГНС разделяется легкой оградой на 2 территории – рабочую, включающую перечисленные отделения и цеха,и вспомогательную, включающую административно-хозяйственные помещения, гаражи, водонапорную башню и резервуар для противопожарного запаса воды.

Принципиальная схема снабжения потребителей СУГ показана на рисунке:

Изотермическое хранение СУГ

Хранилища представляют собой тонкостенные резервуары большого объёма от 5000 до 50000м 3 цилиндрической формы со сводчатой или конусной крышей. Наружная пов-ть их теплоизолируется. Стальные хранилища могут быть как наземными, так и заглублёнными. Поддержание низкой t (-42⁰С –для пропана) м.б. осуществлено путём испарения части СУГ и сброса паров в газовые сети или спец. холодильной уст-кой. Поступление тепла через стенки резервуара незначительно и вызывает испарение 0,3-0,5% объёма, хранящийся жидкости в сутки.

Различают 3 основные технологические схемы изотермич. хранилищ:

С комплекс.холодильной уст-кой

С буферными ёмкостями

-с промежуточным охлаждением

“горячий” продукт, поступ-й по тубе 1 дросселируется в резервуаре 2 с падением t и p . Пары образующиеся за счёт теплопритока из вне и поступающего “гор.“ продукта подаются компрессором 3 по трубопроводу 4 в холодильный агрегат 5, где охлаждается и конденсируются. Конденсат через дроссель-вентиль 6 поступает в изотермич. резервуар.

Мощность холд. агрегата зависит от суммарного притока тепла в резервуар и опред-ся:

- поступления тепла заливаемым “гор” продуктом

Где - ск-ть слива СУГ из цистерны кг/ч;

Теплоёмкость жидкой фазы СУГ кДЖ/(кг⁰С);

И – температура в цистерне и резервуаре.

– приток тела из внешней среды;

где M – масса сжиженного газа в изотермич. резервуаре, кг;

r – теплота парообразования СУГ, кДж/кг;

0,005 – 5% испаряется в сутки.

– неучтенные теплопоступления:

b=0,04..0,12

Из формулы для определения видно, что уменьшить мощность холод.установки можно за счет снижения скорости наполнения резервуара. Обычно при сливе 3х ж/д цистерн она сост. 33-35т/ч, что требует очень мощного холод.оборудования, работающего только несколько часов в сутки (при сливе). В ост.время холод. нужны только для сжижения газа, испаряющегося в резервуаре, что сост. мах 0,5% от хранящихся СУГ.


Транспорт сжиженного газа

В странах СНГ наибольшее распространение получили перевозки СУГ в ж/д и машинныхцистернах, а также баллонах. При расстоянии до 300 км используется машинныйтранспорт, при большем – ж\д. Ж/д цистерна рассчитана на рабочее давление при перевозке пропана 2 МПа, бутана – 0,8 МПа.

Широкое применение получили горизонтальные цилиндрические цистерны объемом 50-100 м 3 . В верхней части цистерны имеется горловина, которая служит люком и предназначена для осмотра и ремонта внутренней полости цистерны. Крышка люка выполнена в виде фланца, на которой предусмотрена арматура: имеются устройства для налива и слива жидкой фазы со скоростными клапанами, подачи и отбора паровой фазы со скоростными клапанами, предохранительного клапана.

Для перевозки СУГ по машинным дорогам используется автоцистерны , вместимость от 2 до 5т. сжиженного газа. В верхней части цистерны установлен предохранительный клапан. В центре заднего днища имеется, люк на внутренней полости крышки которой располагается КИП: термометр, манометр, указатель уровня. Указатель уровня представляет собой стеклянную трубку, заключенную в стальную трубку. Для наполнения и слива цистерн с обеих сторон имеется 6 вентелей, предусмотрено 4 шланга до3,5 м.

Индивидуальные потребители, расположенные вблизи ГНС получают СУГ в баллонах. Баллоны доставляют бортовыми автомобилями или спец. Приспособленными для этих целей(в контейнерах). Контейнер представляет собой сварную клеть, предназначенную для 2-х или 3-х ярусного расположения баллонов.

Перевозить СУГ водным путем получило широкое распространение в странах Западной Европы.

Существует 3 типа судов для перевозки СУГ:

1) Танкеры с резервуарами под давлением 1,6 МПа

2) Танкеры с термоизолирующими резервуарами под пониженным давлением. СУГ транспортируется при промежуточном охлаждении от -5 0 С до +5 0 С и пониженном давлении (0,3…0,6 МПа)

3) Танкеры с термоизолирующими резервуарами под давлением близким к атмосферному и при низкой температуре (- 42 0 С для пропана, -161 0 С для природного газа)

Для снабжения северных районов России широко используется речной транспорт. Для снабжения СУГ потребит.в Арктике и Антарктике используется авиаперевозки.

Пленочные испарители СУГ.

Представляет собой теплообменник труба в трубе. Тонкая пленка СУГ создается путем разбрызгивания его на стенки внутренней трубы 3 с помощью форсунок 2 . Теплоноситель (горячая вода или водяной пар) поступает в кольцевое межтрубное пространство 4 , обеспечивая интенсивное испарение СУГ внутри трубы 3 . Для равномерного распределения температуры по длине испарителя теплоноситель подается в 2 точки, а отводится в одной.

Во избежание недопустимого повышения давления в испарителе на трубе 3 установлен предохранительно-сбросной клапан 5 . Неиспарившийся конденсат отводится через дренажный штуцер 6 . При необходимости увеличения производительности установки к коллектору 1 может быть присоединено несколько испарителей. Коэффициент теплопередачи примерно в 2 раза выше, чем в змеевиковых и трубчатых, поэтому они более компактны и менее металлоемки.

Температуры горения газа.

Основное количество тепла, выделяющегося при сжигании газа расходуется на нагрев продуктов сгорания до определённой температуры.

Различают следующие температуры горения газов:

Жаропроизводительность

Калориметрическую

Теоретическую

Действительную

Жаропроизводительность - это t продуктов полного сгорания горючих газов в адиабатических условиях при α=1 и при первоначальной t газа и воздуха = 0 0 С.

Q н =i пр. сгор = V пр. сгор ∙С р пр. сгор ∙t ж

i пр. сгор- теплосодержание продуктов сгорания кДж/м 3

t ж -жаропроизводительность, 0 С.

t ж = Q н / V пр. сгор ∙С р пр. сгор = Q н /(V co 2 ∙C р СО2 +V Н20 ∙С р H 20 + V N 2 ∙С р N 2)

V co 2 V Н20 V N 2 –объем сотавных частей продуктов сгорания 1 м 3 газа.

С р –средняя объёмная теплоёмкость при P=const. составных частей продуктов сгорания.

В формуле используется средняя теплоёмкость, так как Ср- величина непостоянная, растёт с повышением температуры.

t ж:для метана 2043 0 С; для пропана 2110 0 С; для водорода 2235 0 С

Эти данные при горении в сухом воздухе.

Калориметрическая- t горения газа, учитывающая коэф. Избытка воздуха и физическое тепло газа и воздуха, т.е принимается действительные значения тем-ры. другими словами это t до которой нагрелись бы продукты полного сгорания, если бы всё тепло топлива и воздуха пошло на их нагрев.

Q н +i г +i в =i пр.сгор.

i г i в- энтальпия газа и воздуха кДж/м 3

Написав уравнение в развёрнутом виде и решив его относительно калорим. тем-ры Получим:

T г t в –исходная темпетатура газа и воздуха.

T к ≈1900 0 C,

Расход газа,

Теоретическое количество воздуха необходимое для сжигания 1 метра куб. газа.

Физическое тепло газа и воздуха следует учитывать, если они перед сжиганием нагреты свыше 100 0 C, так как при меньших t эта величина незначительна по сравнению с теплотой сгорания.

Теоретическая температура горения учитывает потери тепла за счёт химической неполноты сгорания и при эндотермических реакциях диссоциации продуктов сгорания.

CO 2 ↔CO+0,5O 2 -Q

H 2 O↔H 2 +0,5O 2 -Q ;

Qx- потери теплоты за счёт химической неполноты сгорания и на диссациацию СО2 и Н20.

При t до 1500 0 C(имеет место в топках котлов и пром. Печей) величину Qx можно не учитывать так как в этом случае диссоциирует ничтожная доля продуктов сгорания. При более высоких температурах надо учитывать.).

Действительная темература горения достигается в реальных условиях сжигания топлива, она ниже теоретической, так как при ее определении учитываются теплопотери в окружающую среду, длительность процесса горения, метод сжигания газа и другие факторы.

t д = t т ∙η п

η п - опытный пирометрический коэффициент.Для большинства топок котлов и печей 0,65. Для наиболее совершенных 0,8- 0,85


Диффузионные горелки

У этого типа горелок газ и воздух отдельными потоками поступают в топку, где происходит смесеобразование и горение. Простейшая диф. Горелка представляет собой требу с высверленными в ней отверстиями.

Такие горелки м.б. прямыми, круглыми, Т- и П-образными и т.д. Газ подводится внутрь таких горелок и выходит через отверстия многочисленными струйками, образуя отдельные факелы. Количество отверстий и их диаметр зависят от производительности горелки. Шаг между отверстиями выбирается так, чтобы не было слияния факела обеспечивалось беглость огня при дожигании газа на горелке.

Диаметр отверстия д.б. от 0,5 до 5 мм. При этом следует учитывать легкуюзасоряемость отверстия малого диаметра. Для хорошего перемешивания газа с воздухом рекомендуется делать не более двух рядов отверстий в каждой трубке диф. горелки. Сечение трубы, подводящей газ д.б. не меньше суммарного сечения горелочных отверстий.

«+» диф горелок:

· Просты в изготовлении, надежны в эксплуатации (исключается проскок пламени),

· имеет большие пределы регулирования, могут работать как на низком, так и на среднем давлении газа без дутья,

· дают устойчивый светящийся факел, обладающий высокой радиацией.

«-» диф горелок:

· Имеются небольшие тепловые нагрузки;

· работают с повышенным α (1,2-1,5). Несмотря на большой избыток воздуха эти горелки часто работают с хим. недожогом.

· Большая длина факела

· Необходимость обеспечения устойчивого разряжения в топочном объеме

· Трудность автоматизации процесса сжигания газа (автоматического пропорционирования газа и воздуха)

Созданы конструкции более крупных диф горелок, обладающим неплохими эксплуатационными свойствами (прим., горелка для отопления и пром. котлов). Хорошее перемешивание газа с воздухом достигается за счет многоструйного выхода газа под углом к оси горелки, сто приводит к закручиванию потока

1-внутренний стакан

2-наружный корпус

3-тангенциальные сопловые щели

4,5- воздушные дроссели

Внутренний стакан вставляется в корпус большего диаметра. По внутреннему пространству между корпусом и стаканом проходит газ, вытекающий через 3 в топку. Около 50% потребляемого воздуха подводится через внутренний стакан. Остальное количество – через наружную кольцевую щель. Движение воздуха обусловлено наличием разряжения в топке. Производительность такой горелки от 30 до 350 м 3 /ч. Они м.б. низкого и среднего давления.

Диф горелки незаменимы в высокотемпературных печах (тепловаренных, сталеплавильных) при подогреве воздуха до температур значительно превышающих температуру воспламенения газа. Предварительное смешение газа с воздухом неосуществимо, поэтому в таких печах диф сжигание газа является не только вынужденным, но и наиболее оправданным, т.к. позволяет получить ярко светящийся сажистый факел большой степенью черноты и интенсивной радиацией.

Подовые горелки

В котельной технике диф горелки могут располагаться нафронтовой или боковой стенках топки, а также внутри нее, на поду. Горелки последнего типа получили название подовые. Используются при переводе отопительных и производственных котлов со слоевыми топками на газообразное топливо. Газ из горелки выходит в топку, куда из-под колосников поступает воздух. Газовые струйки у подовых горелок направляются под углом к потоку воздуха и равномерно распределяются по его сечению.

Процесс смешения осуществляется в спец. щели, образованной огнеупорной кладкой. Это интенсифицирует смешение газа с воздухом, уменьшает α и обеспечивает устойчивое зажигание в образующейся смеси.

1- Коллектор

Коллектор горелки устанавливается на кирпичах, расположенных на колосниковой решетке. Над коллектором огнеупорная кладка образует прямые щели, в которые входит газ, не смешенный с воздухом. Отверстия для выхода газа расположены в 2 ряда в шахматном порядке, симметричном по отношению к вертикальной плоскости с углом между рядами от 90 до 180 о. Воздух подается под колосниковую решетку вентилятором или за счет разряжения в топке, поддерживаемого тягой и проходом через щель, омывая коллектор с двух сторон.

Струя газа в результате турбулентной диффузии перемешивается с воздухом и на расстоянии 20 – 40 мм от отверстия начинает гореть. Заканчивается процесс горения на расстоянии 0,5 – 1 м от горелки. Здесь осуществляется диффузионный принцип сжигания газа. Процесс смесеобразования активизируется тем, что поток газа разбит на мелкие струйки, выходящие с большой скоростью под углом к прямому потоку воздуха. Огнеупорные стенки щели выполняют роль стабилизатора горения, предотвращая отрыв пламени, и являются косвенными излучателями.

Максимальная температура на поверхности щели от 900 – 1000 о С. На поверхности коллектора от 300 – 500 о С. Температура колосниковой решетки под щелью 75 – 80 о С. Подовые горелки обеспечивают полноесжигпние газа при α от 1,1 до 1,3. Давление газа от 500 до 5000 Па (номинальное порядка 1000Па). Давление воздуха от 600 до 1000 Па. При работе без дутья в топке д.б. разряжение 20 – 30 Па для котлов средней производительности (от 2 до 10 тонн пара в час) и не более 8 Па для небольших отопительных котлов.

Подовые горелки отопительных котлов имеют размеры: диаметр отверстий от 1,3 до 3 мм (мах 10 – 20 мм), высота щели 130 – 200 мм; ширина определяется расчетом и обычно в пределах 80 – 110 мм.

Еще в 52

§ простота конструкции

§ Возможность работы на низком давлении газа

§ Нет необходимости подачи воздуха под давлением

§ Полное сжигание газа различных характеристик

§ Устойчивая работа в широком диапазоне изменения нагрузок

§ Бесшумность работы, надежность и простота эксплуатации

§ Высокий коэффициент избытка воздуха

§ Малая производительность (не более120 кВт одной горелкой)

§ Ввиду конструктивных особенностей (горелка в топке) значительного α нельзя использовать высокотемпературных установках.

Смесительные горелки.

Смесительные горелки с принудительной подачей воздуха находят широкое применение. Конструктивно они выполняются так, что бы обеспечить наилучшее перемещение потоков газа и воздуха, который подводится в горелку по отдельным трубам. Проявление смесеобразования начинается в самой горелке и активно завершается в топочной камере. Вследствие этого газ сгорает коротким и несветящимся пламенем. Смешение газа с воздухом осуществляется в результате турбулентной диффузии. Поэтому они называются горелками турбулентного смешивания или просто смесителями.

Для повышения интенсивности сжигания газа следует максимально интенсифицировать смешение газа с воздухом, так как смесеобразование является тормозящим звеном всего процесса. Инжекция процесса смесеобразования достигается следующим образом: закручиванием потока воздуха направляющими лопатками, тангенциальным подводом, подачей газа в виде мелких струй под ушлом к потоку воздуха, расчленением потоков газа и воздуха на мелкие потоки, в которых происходит смесеобразование.

Положительными качествами горелок являются:

1) Возможность сжигания большого количества газа при сравнительно небольших габаритах горелки.

2) Широкий диапазон решения производительности горелки.

3) Возможность подогрева газа и воздуха до t, превышающейt воспламенения, что имеет большое значение для высокотемпературных печей.

4) Сравнительно легкая возможность выполнения консистенций с комбинированным сжиманием топлива, а именно: газ-мазут или газ-угольная пыль.

Основные недостатки:

1) Принудительная подача воздуха

2) Сжигание газа с меньшим объемным тепловым напряжением, чем при кинетическом горении.

3) Сжигание газа с химической неполнотой больше, чем при кинетическом горении.

Имеется производительность 60кВт-60МВт. Используются для обогрева промышленных печей и котлов.

Горелка турбулентного смешивания:

1-корпус, 2- сопло, 3- наконечник сопла, 4 –носик.

Газ входит в горелку через патрубок и с определенной скоростью истекает из сопла. Воздух в гарелку подается под давлением. Перед входом в носик горелки он закручивается. Смешение газа с воздухом начинается внутри горелки при выходе газа из сопла и инжектируется закрученным потоком воздуха. При многоструйной подаче газа процесс образования смеси происходит быстрее и газ сгорает в коротком факеле. При одноструйном наконечнике создается удлиненный факел. Достоинствами горелки являются простота и компактность конструкции, возможность работы при низких давлениях газа и воздуха, широкие пределы регулирования производительности.

Широко применяются многоструйные вихревые горелки, основанные на принципе дробления потоков газа и воздуха на несколько мелких потоков. Внутри них происходит инжекционный процесс смешивания, их производительность 40-940 м 3 /ч.

Смесительные горелки часто выполняются комбинированными. Они позволяют быстро переводить агрегат с одного вида топлива на другой. Кроме того газ в них может сжиматься одновременно с др. видом топлива.

Метод вытеснения.

Используется при хранении СУГ в подземных хранилищах на глубине от 100 до 1200м (в соляных пластах).

Отбор сжиженного газа осуществляется за счет вытеснения его инертной жидкой или газообразной средой. Наиболее часто используется рассол.

1-центральная колонна для рассола

2-рассолопровод

3-наружная колонна для подачи СУГ

4-трубопровод сжиженного газа

5-подземная емкость

7-сжиженный газ

Подземная емкость сообщ-ся с поверхностью 2хколонной системой:

Обсадная труба (3) и свободно подвешенная в устье скважины центральная колонна 1.

СУГ подают и отбирают из емкости по межтрубному пространству.

Центральная колонна опущена до самого низа емкости. Т.к плотность рассола больше плотности СУГ в 2 раза, то последний хранится на рассольной подушке.

Для опорожнения подземной емкости достаточно лишь подвести рассол к устью центральной колонны и под его гидростатическим давлением (1,3 МПа при глубине 100 м) СУГ будет поступать в раздаточный трубопровод с избыточным напором. Его можно транспортировать без применения насосов.

СУГ закачивается в хранилище под давлением, опред-емым противодавлением столба рассола и потерями давления на трение при движении жидкости по межтрубному пространству и центральной колонне.

«+» метода:

1. простота конструктивного исполнения

2. возможность выдать газ в 1 время даже при отсутствии постороннего источника энергии

3. надежность работы всех устройств

4.затраты энергии только на удаление рассола при закачивании сжиженного газа в хранилище

5. необходимость для закачивания только высокопроизводительных насосов, имеющих большое КПД

«-» метода:

1. необходимость постороннего источника энергии с достаточной мощностью при сливе