Изготовление полупроводниковых интегральных микросхем. Общая характеристика технологии производства микросхем

на тему: «Технология изготовления кристаллов полупроводниковых интегральных микросхем »

Дисциплина: «Материаловедение и материалы электронных средств»

Выполнил студент группы 31-Р

Козлов А. Н.

Руководитель Косчинская Е. В.

Орел, 2004

Введение

Часть I. Аналитический обзор

1.1 Интегральные схемы

1.3 Характеристика монокристаллического кремния

1.4 Обоснование применения монокристаллического кремния

1.5 Технология получения монокристаллического кремния

1.5.1 Получение кремния полупроводниковой чистоты

1.5.2 Выращивание монокристаллов

1.6 Механическая обработка монокристаллического кремния

1.6.1 Калибровка

1.6.2 Ориентация

1.6.3 Резка

1.6.4 Шлифовка и полировка

1.6.5 Химическое травление полупроводниковых пластин и подложек

1.7 Операция разделения подложек на платы

1.7.1 Алмазное скрайбирование

1.7.2 Лазерное скрайбирование

1.8 Разламывание пластин на кристаллы

Часть II. Расчет

Заключение

Список используемой литературы

Технология изготовления интегральных микросхем представляет собой совокупность механических, физических, химических способов обработки различных материалов (полупроводников, диэлектриков, металлов), в результате которой создается ИС.

Повышение производительности труда обусловлено в первую очередь совершенствованием технологии, внедрением прогрессивных технологических методов, стандартизацией технологического оборудования и оснастки, механизацией ручного труда на основе автоматизации технологических процессов. Значимость технологии в производстве полупроводниковых приборов и ИС особенно велика. Именно постоянное совершенствование технологии полупроводниковых приборов привело на определенном этапе ее развития к созданию ИС, а в дальнейшем - к широкому их производству.

Производство ИС началось примерно с 1959 г. На основе предложенной к этому времени планарной технологии. Основой планарной технологии послужила разработка нескольких фундаментальных технологических методов. Наряду с разработкой технологических методов развитие ИС включало исследования принципов работы их элементов, изобретение новых элементов, совершенствование методов очистки полупроводниковых материалов, проведение их физико-химических исследований с целью установления таких важнейших характеристик, как предельные растворимости примесей, коэффициенты диффузии донорных и акцепторных примесей и др.

За короткий исторический срок современная микроэлектроника стала одним из важнейших направлений научно-технического прогресса. Создание больших и сверхбольших интегральных микросхем, микропроцессоров и микропроцессорных систем позволило организовать массовое производство электронных вычислительных машин высокого быстродействия, различных видов электронной аппаратуры, аппаратуры управления технологическими процессами, систем связи, систем и устройств автоматического управления и регулирования.

Микроэлектроника продолжает развиваться быстрыми темпами, как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.


Часть I . Аналитический обзор

1.1 Интегральные схемы

В процессе развития микроэлектроники (МЭ) номенклатура ИС непрерывно изменялась. Главный тип ИС в настоящее время - полупроводниковые ИС.

Классификация ИС.

Классификация ИС может производиться по различным признакам, ограничимся одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники.

Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки. В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщина пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше).

Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные элементы типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т. п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

Гибридной ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называются навесными, подчеркивая этим их, обособленность от основного технологического цикла получения пленочной части схемы.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений - металлической разводкой.

В данной курсовой работе рассмотрена технология изготовления плат полупроводниковых интегральных микросхем. Полупроводниковая интегральная микросхема – это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки. Эти ИС составляют основу современной микроэлектроники. Размеры кристаллов у современных полупроводниковых интегральных микросхем достигают 20x20 мм, чем больше площадь кристалла, тем более многоэлементную ИС можно на ней разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

1.2 Требования к полупроводниковым подложкам

Полупроводники в виде пластин или дисков, вырезанных из монокристаллов, называются подложками. В их объеме и на поверхности методами травления, окисления, диффузии, эпитаксии, имплантации, фотолитографии, другими технологическими приемами формируются элементы микросхем электронных приборов и устройств.

Качество поверхности подложки определяется ее микрорельефом (шероховатостью), кристаллическим совершенством поверхностных слоев и степенью их физико-химической чистоты. Поверхность подложки характеризуется неплоскостностью и непараллельностью. Высокие требования предъявляются и к обратной - нерабочей стороне подложки. Неодинаковая и неравноценная обработка обеих сторон подложки приводит к дополнительным остаточным механическим напряжениям и деформации кристалла, что обусловливает изгиб пластин.

После механической обработки в тонком приповерхностном слое подложки возникает нарушенный слой. По глубине он может быть разделен на характерные зоны. Для кристаллов Ge, Si, GaAs и других после их резки и шлифования на глубине 0,3...0,5 средней высоты неровностей расположена рельефная зона, в которой наблюдаются одинаковые виды нарушений и дефектов монокристаллической структуры: монокристаллические сколы, невыкрошившиеся блоки, трещины, выступы и впадины различных размеров. После резки дефекты располагаются в основном под следами от режущей кромки алмазного диска в виде параллельных дорожек из скоплений дефектов, в шлифованных кристаллах - равномерно по сечению. При полировании первый слой представляет собой поверхностные неровности, относительно меньшие, чем при шлифовании, и в отличие от шлифованной поверхности он является аморфным. Второй слой также аморфный, его глубина в 2...3 раза больше, чем поверхностные неровности. Третий слой является переходным от аморфной структуры к ненарушенному монокристаллу и может содержать упругие или пластические деформации, дислокации, а в некоторых случаях и трещины. В процессе обработки и подготовки поверхности подложек полупроводников необходимо создание совершенных поверхностей, имеющих высокую степень плоскопараллельности при заданной кристаллографической ориентации, с полным отсутствием нарушенного слоя, минимальной плотностью поверхностных дефектов, дислокаций и т.д. Поверхностные загрязнения должны быть минимальными.

3 Характеристика монокристаллического кремния

Физико-химические свойства кремния

1.Оптимальное значение ширины запрещенной зоны, которая обусловила достаточно низкую концентрацию собственных носителей и высокую рабочую температуру.

2.Большой диапазон реально достижимых удельных сопротивлений в пределах от 10 -3 Ом-см (вырожденный) до 10 5 (близкий к собственному).

3.Высокое значение модуля упругости, значительная жесткость (большая, чем, например, у стали).

Как делают микросхемы

тобы понять, в чем заключается основное различие между этими двумя технологиями, необходимо сделать краткий экскурс в саму технологию производства современных процессоров или интегральных микросхем.

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник — это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная. Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная — к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы — основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом — при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток. Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов. Остановимся более подробно на процессе изготовления микросхем, первый этап которого — получение кремниевых подложек.

Шаг 1. Выращивание болванок

Создание таких подложек начинается с выращивания цилиндрического по форме монокристалла кремния. В дальнейшем из таких монокристаллических заготовок (болванок) нарезают круглые пластины (wafers), толщина которых составляет приблизительно 1/40 дюйма, а диаметр — 200 мм (8 дюймов) или 300 мм (12 дюймов). Это и есть кремниевые подложки, служащие для производства микросхем.

При формировании пластин из монокристаллов кремния учитывается то обстоятельство, что для идеальных кристаллических структур физические свойства в значительной степени зависят от выбранного направления (свойство анизотропии). К примеру, сопротивление кремниевой подложки будет различным в продольном и поперечном направлениях. Аналогично, в зависимости от ориентации кристаллической решетки, кристалл кремния будет по-разному реагировать на какие-либо внешние воздействия, связанные с его дальнейшей обработкой (например, травление, напыление и т.д.). Поэтому пластина должна быть вырезана из монокристалла таким образом, чтобы ориентация кристаллической решетки относительно поверхности была строго выдержана в определенном направлении.

Как уже отмечалось, диаметр заготовки монокристалла кремния составляет либо 200, либо 300 мм. Причем диаметр 300 мм — это относительно новая технология, о которой мы расскажем ниже. Понятно, что на пластине такого диаметра может разместиться далеко не одна микросхема, даже если речь идет о процессоре Intel Pentium 4. Действительно, на одной подобной пластине-подложке формируется несколько десятков микросхем (процессоров), но для простоты мы рассмотрим лишь процессы, происходящие на небольшом участке одного будущего микропроцессора.

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

После формирования кремниевой подложки наступает этап создания сложнейшей полупроводниковой структуры.

Для этого в кремний нужно внедрить так называемые донорную и акцепторную примеси. Однако возникает вопрос — как осуществить внедрение примесей по точно заданному рисунку-шаблону? Для того чтобы это стало возможным, те области, куда не требуется внедрять примеси, защищают специальной пленкой из диоксида кремния, оставляя оголенными только те участки, которые подвергаются дальнейшей обработке (рис. 2). Процесс формирования такой защитной пленки нужного рисунка состоит из нескольких этапов.

На первом этапе вся пластина кремния целиком покрывается тонкой пленкой диоксида кремния (SiO2), который является очень хорошим изолятором и выполняет функцию защитной пленки при дальнейшей обработке кристалла кремния. Пластины помещают в камеру, где при высокой температуре (от 900 до 1100 °С) и давлении происходит диффузия кислорода в поверхностные слои пластины, приводящая к окислению кремния и к образованию поверхностной пленки диоксида кремния. Для того чтобы пленка диоксида кремния имела точно заданную толщину и не содержала дефектов, необходимо строго поддерживать постоянную температуру во всех точках пластины в процессе окисления. Если же пленкой из диоксида кремния должна быть покрыта не вся пластина, то предварительно на кремниевую подложку наносится маска Si3N4, предотвращающая нежелательное окисление.

Шаг 3. Нанесение фоторезистива

После того как кремниевая подложка покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для защиты остальных областей от травления на поверхность пластины наносится слой так называемого фоторезиста. Термином «фоторезисты» обозначают светочувствительные и устойчивые к воздействию агрессивных факторов составы. Применяемые составы должны обладать, с одной стороны, определенными фотографическими свойствами (под воздействием ультрафиолетового света становиться растворимыми и вымываться в процессе травления), а с другой — резистивными, позволяющими выдерживать травление в кислотах и щелочах, нагрев и т.д. Основное назначение фоторезистов — создание защитного рельефа нужной конфигурации.

Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолитографией и включает следующие основные операции: формирование слоя фоторезиста (обработка подложки, нанесение, сушка), формирование защитного рельефа (экспонирование, проявление, сушка) и передача изображения на подложку (травление, напыление и т.д.).

Перед нанесением слоя фоторезиста (рис. 3) на подложку последняя подвергается предварительной обработке, в результате чего улучшается ее сцепление со слоем фоторезиста. Для нанесения равномерного слоя фоторезиста используется метод центрифугирования. Подложка помещается на вращающийся диск (центрифуга), и под воздействием центробежных сил фоторезист распределяется по поверхности подложки практически равномерным слоем. (Говоря о практически равномерном слое, учитывают то обстоятельство, что под действием центробежных сил толщина образующейся пленки увеличивается от центра к краям, однако такой способ нанесения фоторезиста позволяет выдержать колебания толщины слоя в пределах ±10%.)

Шаг 4. Литография

После нанесения и сушки слоя фоторезиста наступает этап формирования необходимого защитного рельефа. Рельеф образуется в результате того, что под действием ультрафиолетового излучения, попадающего на определенные участки слоя фоторезиста, последний изменяет свойства растворимости, например освещенные участки перестают растворяться в растворителе, которые удаляют участки слоя, не подвергшиеся освещению, или наоборот — освещенные участки растворяются. По способу образования рельефа фоторезисты делят на негативные и позитивные. Негативные фоторезисты под действием ультрафиолетового излучения образуют защитные участки рельефа. Позитивные фоторезисты, напротив, под воздействием ультрафиолетового излучения приобретают свойства текучести и вымываются растворителем. Соответственно защитный слой образуется в тех участках, которые не подвергаются ультрафиолетовому облучению.

Для засветки нужных участков слоя фоторезиста используется специальный шаблон-маска. Чаще всего для этой цели применяются пластинки из оптического стекла с полученными фотографическим или иным способом непрозрачными элементами. Фактически такой шаблон содержит рисунок одного из слоев будущей микросхемы (всего таких слоев может насчитываться несколько сотен). Поскольку этот шаблон является эталоном, он должен быть выполнен с большой точностью. К тому же с учетом того, что по одному фотошаблону будет сделано очень много фотопластин, он должен быть прочным и устойчивым к повреждениям. Отсюда понятно, что фотошаблон — весьма дорогая вещь: в зависимости от сложности микросхемы он может стоить десятки тысяч долларов.

Ультрафиолетовое излучение, проходя сквозь такой шаблон (рис. 4), засвечивает только нужные участки поверхности слоя фоторезиста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя. При этом открывается соответствующая часть слоя диоксида кремния.

Несмотря на кажущуюся простоту фотолитографического процесса, именно этот этап производства микросхем является наиболее сложным. Дело в том, что в соответствии с предсказанием Мура количество транзисторов на одной микросхеме возрастает экспоненциально (удваивается каждые два года). Подобное возрастание числа транзисторов возможно только благодаря уменьшению их размеров, но именно уменьшение и «упирается» в процесс литографии. Для того чтобы сделать транзисторы меньше, необходимо уменьшить геометрические размеры линий, наносимых на слой фоторезиста. Но всему есть предел — сфокусировать лазерный луч в точку оказывается не так-то просто. Дело в том, что в соответствии с законами волновой оптики минимальный размер пятна, в который фокусируется лазерный луч (на самом деле это не просто пятно, а дифракционная картина), определяется кроме прочих факторов и длиной световой волны. Развитие литографической технологии со времени ее изобретения в начале 70-х шло в направлении сокращения длины световой волны. Именно это позволяло уменьшать размеры элементов интегральной схемы. С середины 80-х в фотолитографии стало использоваться ультрафиолетовое излучение, получаемое с помощью лазера. Идея проста: длина волны ультрафиолетового излучения меньше, чем длина волны света видимого диапазона, следовательно, возможно получить и более тонкие линии на поверхности фоторезиста. До недавнего времени для литографии использовалось глубокое ультрафиолетовое излучение (Deep Ultra Violet, DUV) с длиной волны 248 нм. Однако когда фотолитография перешагнула границу 200 нм, возникли серьезные проблемы, впервые поставившие под сомнение возможность дальнейшего использования этой технологии. Например, при длине волны меньше 200 мкм слишком много света поглощается светочувствительным слоем, поэтому усложняется и замедляется процесс передачи шаблона схемы на процессор. Подобные проблемы побуждают исследователей и производителей искать альтернативу традиционной литографической технологии.

Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet — сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения с длиной волны 13 нм.

Переход с DUV- на EUV-литографию обеспечивает более чем 10-кратное уменьшение длины волны и переход в диапазон, где она сопоставима с размерами всего нескольких десятков атомов.

Применяемая сейчас литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, в то время как EUV-литография делает возможной печать линий гораздо меньшей ширины — до 30 нм. Управлять ультракоротким излучением не так просто, как кажется. Поскольку EUV-излучение хорошо поглощается стеклом, то новая технология предполагает использование серии из четырех специальных выпуклых зеркал, которые уменьшают и фокусируют изображение, полученное после применения маски (рис. 5 , , ). Каждое такое зеркало содержит 80 отдельных металлических слоев толщиной примерно в 12 атомов.

Шаг 5. Травление

После засвечивания слоя фоторезиста наступает этап травления (etching) с целью удаления пленки диоксида кремния (рис. 8).

Часто процесс травления ассоциируется с кислотными ваннами. Такой способ травления в кислоте хорошо знаком радиолюбителям, которые самостоятельно делали печатные платы. Для этого на фольгированный текстолит лаком, выполняющим функцию защитного слоя, наносят рисунок дорожек будущей платы, а затем опускают пластину в ванну с азотной кислотой. Ненужные участки фольги стравливаются, обнажая чистый текстолит. Этот способ имеет ряд недостатков, главный из которых — невозможность точно контролировать процесс удаления слоя, так как слишком много факторов влияют на процесс травления: концентрация кислоты, температура, конвекция и т.д. Кроме того, кислота взаимодействует с материалом по всем направлениям и постепенно проникает под край маски из фоторезиста, то есть разрушает сбоку прикрытые фоторезистом слои. Поэтому при производстве процессоров используется сухой метод травления, называемый также плазменным. Такой метод позволяет точно контролировать процесс травления, а разрушение вытравливаемого слоя происходит строго в вертикальном направлении.

При использовании сухого травления для удаления с поверхности пластины диоксида кремния применяется ионизированный газ (плазма), который вступает в реакцию с поверхностью диоксида кремния, в результате чего образуются летучие побочные продукты.

После процедуры травления, то есть когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя. Таким образом, на кремниевой подложке остается рисунок, выполненный диоксидом кремния.

Шаг 6. Диффузия (ионная имплантация)

Напомним, что предыдущий процесс формирования необходимого рисунка на кремниевой подложке требовался для того, чтобы создать в нужных местах полупроводниковые структуры путем внедрения донорной или акцепторной примеси. Процесс внедрения примесей осуществляется посредством диффузии (рис. 9) — равномерного внедрения атомов примеси в кристаллическую решетку кремния. Для получения полупроводника n-типа обычно используют сурьму, мышьяк или фосфор. Для получения полупроводника p-типа в качестве примеси используют бор, галлий или алюминий.

Для процесса диффузии легирующей примеси применяется ионная имплантация. Процесс имплантации заключается в том, что ионы нужной примеси «выстреливаются» из высоковольтного ускорителя и, обладая достаточной энергией, проникают в поверхностные слои кремния.

Итак, по окончании этапа ионной имплантации необходимый слой полупроводниковой структуры создан. Однако в микропроцессорах таких слоев может насчитываться несколько. Для создания очередного слоя на полученном рисунке схемы выращивается дополнительный тонкий слой диоксида кремния. После этого наносятся слой поликристаллического кремния и еще один слой фоторезиста. Ультрафиолетовое излучение пропускается сквозь вторую маску и высвечивает соответствующий рисунок на фотослое. Затем опять следуют этапы растворения фотослоя, травления и ионной имплантации.

Шаг 7. Напыление и осаждение

Наложение новых слоев осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняются атомами металла; в результате на кристалле создаются металлические полоски — проводящие области. Таким образом в современных процессорах устанавливаются связи между слоями, формирующими сложную трехмерную схему. Процесс выращивания и обработки всех слоев длится несколько недель, а сам производственный цикл состоит из более чем 300 стадий. В результате на кремниевой пластине формируются сотни идентичных процессоров.

Чтобы выдержать воздействия, которым подвергаются пластины в процессе нанесения слоев, кремниевые подложки изначально делаются достаточно толстыми. Поэтому, прежде чем разрезать пластину на отдельные процессоры, ее толщину уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на тыльную сторону подложки наносят слой специального материала, улучшающего крепление кристалла к корпусу будущего процессора.

Шаг 8. Заключительный этап

По окончании цикла формирования все процессоры тщательно тестируются. Затем из пластины-подложки с помощью специального устройства вырезаются конкретные, уже прошедшие проверку кристаллы (рис. 10).

Каждый микропроцессор встраивается в защитный корпус, который также обеспечивает электрическое соединение кристалла микропроцессора с внешними устройствами. Тип корпуса зависит от типа и предполагаемого применения микропроцессора.

После запечатывания в корпус каждый микропроцессор повторно тестируется. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Перспективные технологии

Технологический процесс производства микросхем (в частности, процессоров) рассмотрен нами весьма упрощенно. Но даже такое поверхностное изложение позволяет понять технологические трудности, с которыми приходится сталкиваться при уменьшении размеров транзисторов.

Однако, прежде чем рассматривать новые перспективные технологии, ответим на поставленный в самом начале статьи вопрос: что же такое проектная норма технологического процесса и чем, собственно, отличается проектная норма 130 нм от нормы 180 нм? 130 нм или 180 нм — это характерное минимальное расстояние между двумя соседними элементами в одном слое микросхемы, то есть своеобразный шаг сетки, к которой осуществляется привязка элементов микросхемы. При этом совершенно очевидно, что, чем меньше этот характерный размер, тем больше транзисторов можно разместить на одной и той же площади микросхемы.

В настоящее время в производстве процессоров Intel используется 0,13-микронный технологический процесс. По этой технологии изготавливают процессор Intel Pentium 4 с ядром Northwood, процессор Intel Pentium III с ядром Tualatin и процессор Intel Celeron. В случае применения такого технологического процесса полезная ширина канала транзистора составляет 60 нм, а толщина оксидного слоя затвора не превышает 1,5 нм. Всего же в процессоре Intel Pentium 4 размещается 55 млн. транзисторов.

Наряду с увеличением плотности размещения транзисторов в кристалле процессора, 0,13-микронная технология, пришедшая на смену 0,18-микронной, имеет и другие нововведения. Во-первых, здесь используются медные соединения между отдельными транзисторами (в 0,18-микронной технологии соединения были алюминиевыми). Во-вторых, 0,13-микронная технология обеспечивает более низкое энергопотребление. Для мобильной техники, например, это означает, что энергопотребление микропроцессоров становится меньше, а время работы от аккумуляторной батареи — больше.

Ну и последнее нововведение, которое было воплощено при переходе на 0,13-микронный технологический процесс — это использование кремниевых пластин (wafer) диаметром 300 мм. Напомним, что до этого большинство процессоров и микросхем изготовлялись на основе 200-миллиметровых пластин.

Увеличение диаметра пластин позволяет снизить себестоимость каждого процессора и увеличить выход продукции надлежащего качества. Действительно, площадь пластины диаметром 300 мм в 2,25 раза больше площади пластины диаметром 200 мм, соответственно и количество процессоров, получаемых из одной пластины диаметром 300 мм, в два с лишним раза больше.

В 2003 году ожидается внедрение нового технологического процесса с еще меньшей проектной нормой, а именно 90-нанометрового. Новый технологический процесс, по которому корпорация Intel будет производить большую часть своей продукции, в том числе процессоры, наборы микросхем и коммуникационное оборудование, был разработан на опытном заводе D1C корпорации Intel по обработке 300-миллиметровых пластин в г.Хиллсборо (шт.Орегон).

23 октября 2002 года корпорация Intel объявила об открытии нового производства стоимостью 2 млрд. долл. в Рио-Ранчо (шт.Нью-Мексико). На новом заводе, получившем название F11X, будет применяться современная технология, по которой будут производиться процессоры на 300-мм подложках с использованием технологического процесса с проектной нормой 0,13 микрон. В 2003 году завод будет переведен на технологический процесс с проектной нормой 90 нм.

Кроме того, корпорация Intel уже заявила о возобновлении строительства еще одного производственного объекта на Fab 24 в Лейкслипе (Ирландия), который предназначен для изготовления полупроводниковых компонентов на 300-миллиметровых кремниевых подложках с 90-нанометровой проектной нормой. Новое предприятие общей площадью более 1 млн. кв. футов с особо чистыми помещениями площадью 160 тыс. кв. футов предполагается ввести в строй в первой половине 2004 года, и на нем будет работать более тысячи сотрудников. Стоимость объекта составляет около 2 млрд. долл.

В 90-нанометровом процессе применяется целый ряд передовых технологий. Это и самые маленькие в мире серийно изготавливаемые КМОП-транзисторы с длиной затвора 50 нм (рис. 11), что обеспечивает рост производительности при одновременном снижении энергопотребления, и самый тонкий оксидный слой затвора среди всех когда-либо производившихся транзисторов — всего 1,2 нм (рис. 12), или менее 5 атомарных слоев, и первая в отрасли реализация высокоэффективной технологии напряженного кремния.

Из перечисленных характеристик в комментариях нуждается, пожалуй, лишь понятие «напряженного кремния» (рис. 13). В таком кремнии расстояние между атомами больше, чем в обычном полупроводнике. Это, в свою очередь, обеспечивает более свободное протекание тока, аналогично тому, как на дороге с более широкими полосами движения свободнее и быстрее движется транспорт.

В результате всех нововведений на 10-20% улучшаются рабочие характеристики транзисторов, при увеличении затрат на производство всего на 2%.

Кроме того, в 90-нанометровом технологическом процессе используется семь слоев в микросхеме (рис. 14), что на один слой больше, чем в 130-нанометровом технологическом процессе, а также медные соединения.

Все эти особенности в сочетании с 300-миллиметровыми кремниевыми подложками обеспечивают корпорации Intel выигрыш в производительности, объемах производства и себестоимости. В выигрыше оказываются и потребители, поскольку новый технологический процесс Intel позволяет продолжить развитие отрасли в соответствии с законом Мура, вновь и вновь повышая производительность процессоров.

Описание схемы

1. Номиналы пассивных элементов:

R6 = R11 = 4.7 кОм

  • 2. Т1, Т2, Т3, Т4, Т5 - n-p-n транзисторы ИС; Т6 - p-n-p транзистор ИС;
  • 3. с=200 Ом/кВ
  • 4. Напряжение питания 15В
  • 5. Технология планарно-эпитаксиальная.
  • 6. Изоляция p-n переходом.

Вывод 6 - питание; вывод 1 - земля.

Технология изготовления ИМС

Любые элементы полупроводниковых ИМС можно создать на основе максимум трех p-n-переходов и четырех слоев двух типов электропроводности (электронной и дырочной). Изоляция элементов часто осуществляется с помощью обратно смещенного p-n- перехода. Принцип этого способа изоляции заключается в том, что подачей большого отрицательного потенциала на p-подложку получают обратно смещенный p-n-переход на границе коллекторных областей и p-подложки. Сопротивление обратно смещенного p-n- перехода большое и достигает МОм, поэтому получается хорошая изоляция элементов друг от друга.

Технология производства полупроводниковых ИМС представляет собой сложный процесс, включающий десятки операций, и описать его полностью в кратком методическом пособии и курсовой работе невозможно.

Поэтому мы рассмотрим сокращенный маршрут изготовления ИМС с изоляцией элементов и обратно смещенными p-n-переходами методом планарно-эпитаксиальной технологии. Операция изоляции элементов осуществляется групповым методом, сочетается с технологией изготовления ИМС в целом и реализуется методом разделительной (изолирующей) диффузии на всю глубину эпитаксиального слоя. Эта технология позволяет получать необходимую степень легирования коллектора и подложки независимо друг от друга. При выборе высокоомной подложки и не очень высокоомного эпитаксиального слоя (коллектора) можно обеспечить оптимальные емкости перехода коллектор-база и его напряжение пробоя. Наличие эпитаксиального слоя позволяет точно регулировать толщину и сопротивление коллектора, которое, однако, остается достаточно высоким (70-100 Ом). Снижение сопротивления коллектора достигается созданием высоколегированного скрытого n + -слоя путем диффузии в p-подложку примеси n-типа перед наращиванием эпитаксиального слоя. Этот слой обеспечивает низкоомный путь току от активной коллекторной зоны к коллекторному контакту без снижения пробивного напряжения перехода коллектор-база.

Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых ИМС с изоляцией элементов p-n- переходами:

  • 1) Механическая обработка поверхности рабочей стороны кремниевой пластины p-типа до 14-го класса чистоты и травление в парах HCl для удаления нарушенного слоя. Сначала пластины Si шлифуют до заданной толщины, затем полируют, подвергают травлению и промывают.
  • 2) Окисление для создания защитной маски при диффузии примеси n-типа. На поверхности кремния выращивается плотная пленка двуокиси кремния (SiO2), которая имеет близкие к кремнию коэффициент теплового расширения, что позволяет использовать ее как маску при диффузии. Наиболее технологичным методом получения пленок SiO2 является термическое окисление поверхности кремния. В качестве окисляющей среды используется сухой или увлажняющий кислород либо пары воды. Температура рабочей зоны при окислении 1100-1300С. Окисление проводится методом открытой трубы в потоке окислителя. В сухом кислороде выращивается наиболее совершенный по структуре окисный слой, но процесс окисления при этом проходит медленно (при Т=1200С, толщина слоя SiO2 составляет 0,1 мкм). На практике целесообразно проводить окисление в три стадии: в сухом кислороде, влажном кислороде и снова в сухом. Для стабилизации свойств защитных окисных слоев в процессе окисления в среду влажного кислорода или паров воды добавляют борную кислоту, двуокись титана и др.

3) Фотолитография для вскрытия окон в окисле и проведение локальной диффузии в местах формирования скрытых слоев (рис. 3). Фотолитография это создание на поверхности подложки защитной маски малых размеров практически любой сложности, используемой в дальнейшем для проведения диффузии, эпитаксии и других процессов. Образуется она с помощью специального слоя, который называется фоторезист - материал, который меняет свою структуру под действием света. По способности изменять свойства при облучении фоторезисты бывают негативные и позитивные.

Фоторезист должен быть чувствительным к облучению, иметь высокую разрешающую способность и кислотостойкость.

На окисленную поверхность кремния с толщиной окисла 3000-6000 Г наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной, затем при температуре 100-150 С.

Подложку совмещают с фотошаблоном и освещают. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200С в течении одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона.

4) Диффузия для создания скрытого n+ слоя (рис. 4). Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС. Процесс диффузии определяет концентрационный профиль интегральной структуры и основные параметры компонентов ИМС. Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. При заданной температуре скорость диффузии определяется коэффициентом диффузии, который равен числу атомов, проходящих через поперечное сечение в 1 см2 за 1 с при градиенте концентрации 1 см-4. В качестве легирующих примесей в кремнии используется в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор-донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ.

В производстве ИМС реализуют два типа диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси .

Для создания заданного распределения примеси в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси .

5) Снятие окисла и подготовка поверхности перед процессом эпитаксии (рис. 5).

6) Формирование эпитаксиальной структуры (рис. 6). Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку подложки. Толщина его может быть от монослоя до нескольких десятков микрон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто- или гомоэпитаксия. В отличии от автоэпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.

Эпитаксиальный процесс позволяет получать слои полупроводника, однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке. В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакций восстановления SiCl 4 , SiBr 4 . В реакционной камере на поверхности подложки в температурном диапазоне 1150-1270С протекает реакция

SiCl4+2H2=Si+4HCl,

в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.

Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используется водород и азот.

Толщина эпитаксиального слоя n-типа составляет 10-15 мкм с удельным сопротивлением 0,1-10 Ом*см. В эпитаксиальном слое формируются коллекторы транзисторов и карманы резисторов.

7) Окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии (рис. 7).

8) Фотолитография для вскрытия окон под разделительную диффузию (рис. 8).

9) Проведение разделительной диффузии и создание изолированных карманов (рис. 9).

Разделительная диффузия проводится в две стадии: первая (загонка)- при температуре 1100-1150С, вторая (разгонка)- при температуре 1200-1250С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника, разделенные p-n-переходами. В каждой изолированной области в результате последующих процессов формируется интегральный элемент.

10) Окисление поверхности для проведения фотолитографии под базовую диффузию (рис. 10).

11) Фотолитография для вскрытия окон под базовую диффузию (рис. 11).

12) Формирование базового слоя диффузией примеси p-типа (рис. 12).

13) Окисление поверхности для проведения четвертой фотолитографии (рис. 13).

14) Фотолитография для вскрытия окон под эмиттерную диффузию (рис. 12).

15) Формирование эмиттерного слоя диффузией примеси n-типа, а также последующее окисление поверхности (рис. 15).

Эмиттерная диффузия проводится в одну стадию при температуре около 1050С. Одновременно с эмиттерами формируются области под контакты коллекторов. В качестве легирующей примеси используется фосфор. Толщина слоя d ? 0,5-2,0 мкм, концентрация акцепторов N ?10 21 cм -3 Используется для создания эмиттеров транзисторов, низкоомных резисторов, подлегирования коллекторных контактов и др.

16) Пятая фотолитография для вскрытия контактных окон (рис. 16).

17) Напыление пленки алюминия (рис. 17).

Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной 1 мкм.

18) Фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика (рис. 18).

После фотолитографии металл обжигается в среде азота при температуре 500С.

Расчет интегральных компонентов

Технология изготовления интегральных микросхе

Производство интегральных микросхем состоит из ряда операций, выполняя которые постепенно из исходных материалов получают готовое изделие. Количество операций технологического процесса может достигать 200 и более, поэтому рассмотрим только базовые.

Эпитаксия - это операция наращивания на подложке монокристаллического слоя, повторяющего структуру подложки и ее кристаллографическую ориентацию. Для получения эпитаксиальных пленок толщиной от 1 до 15 мкм обычно применяется хлоридный метод, при котором полупроводниковые пластины после тщательной очистки поверхности от различного рода загрязнений помещают в кварцевую трубу с высокочастотным нагревом, где пластины нагреваются до 1200±3 оС. Через трубу пропускают поток водорода с небольшим содержанием тетрахлорида кремния. Образующиеся при реакции атомы кремния занимают места в узлах кристаллической решетки, из-за чего растущая пленка продолжает кристаллическую структуру подложки. При добавлении в смесь газов газообразных соединений доноров наращиваемый слой приобретает дырочную проводимость.

Легирование - это операция введения примесей в подложку. Существуют два метода легирования: диффузия примесей и ионная имплантация.

Диффузия примесей представляет собой обусловленное тепловым движением перемещение частиц в направлении убывания их концентрации. Основной механизм проникновения примесных атомов в кристаллическую решетку состоит в их последовательном перемещении по вакансиям решетки. Диффузия примесей осуществляется в кварцевых печах при температуре 1100-1200 оС, поддерживаемой с точностью ±0,5 оС. Через печь пропускается нейтральный газ-носитель (N2 или Аг), который переносит частицы диффузанта (В2О3 или Р2О5) к поверхности пластин, где в результате химических реакций выделяются атомы примесей (В или Р), которые диффундируют вглубь пластин.

Ионное легирование широко используется при создании БИС и СБИС. По сравнению с диффузией процесс ионного легирования занимает меньше времени и позволяет создавать слои с субмикронными горизонтальными размерами, толщиной менее 0,1 мкм, с высокой воспроизводимостью параметров.

Термическое окисление применяется для получения тонких пленок диоксида кремния SiО2, оно основано на высокотемпературных реакциях кремния с кислородом или кислородосодержащими веществами. Окисление происходит в кварцевых печах при температуре 800-1200 оС с точностью ±1 оС..

Травление применяется для очистки поверхности полупроводниковых пластин от различного рода загрязнений, удаления слоя SiО2, также для создания на поверхности подложек канавок и углублений. Травление может быть как жидкостным, так и сухим.

Жидкостное травление осуществляется с помощью кислоты, либо щелочи. Кислотное травление применяют при подготовке пластин кремния к изготовлению структур микросхем с целью получения зеркально гладкой поверхности, а также для удаления пленки SiО2 и формирования в ней отверстий. Щелочное травление применяют для получения канавок и углублений.

Литография - это процесс формирования отверстий в масках, применяемых для локальной диффузии, травления, окисления и других операций. Существует несколько разновидностей этого процесса.

Фотолитография основана на использовании светочувствительных материалов - фоторезистов, которые могут быть негативными и позитивными. Негативные фоторезисты под действием света полимеризуются и становятся устойчивыми к травителям. В позитивных фоторезистах свет, наоборот, разрушает полимерные цепочки, поэтому засвеченные участки фоторезиста разрушаются травителем. При производстве ППИС слой фоторезиста наносят на поверхность SiО2, а при производстве ГИС - на тонкий слой металла, нанесенный на подложку, или на тонкую металлическую пластину, выполняющую функции съемной маски.

Необходимый рисунок элементов ИС получают путем облучения фоторезистасветом через фотошаблон, представляющий собой стеклянную пластину, на одной из сторон которой имеется позитивный или негативный рисунок элементов ИС в масштабе 1:1. При производстве ИС используется несколько фотошаблонов, каждый из которых задает рисунок тех или иных слоев (базовых и эмиттерных областей, контактных выводов и т. д.).

После облучения светом неполимеризованные участки фоторезиста удаляются травителем и на поверхности SiО2 (или металлической пленки) образуется фоторезистивная маска, через отверстия в которой осуществляют травление SiО2 (или металлической пленки), в результате чего рисунок фотошаблона оказывается перенесенным на поверхность подложки.

Рентгеновская литография использует мягкое рентгеновское излучение с длиной волны около 1 нм, что позволяет получить D » 0,1 мкм. Фотошаблон в этом случае представляет собой такую мембрану (около 5 мкм), прозрачную для рентгеновских лучей, на которой методом электронно-лучевой литографии создан рисунок элементов ИС.

Ионно-лучевая литография использует облучение резиста пучком ионов. Чувствительность резиста к ионному облучению во много раз выше, чем к электронному, что позволяет использовать пучки с малыми токами и соответственно малым диаметром (до 0,01 мкм). Система ионно-лучевой литографии технологически совместима с установками ионного легирования.

Продолжительность: 2 часа (90 мин.)

11.1 Основные вопросы

Понятие интегральной микросхемы;

Виды интегральных микросхем, различия между полупроводниковыми и гибридно-пленочными микросхемами;

Основные этапы производства полупроводниковых интегральных микросхем;

Основные этапы производства гибридно-пленочных интегральных микросхем.

11.2 Текст лекции

11.2.1 Понятие интегральной микросхемы. Виды интегральных микросхем до 40 мин

Ранее вся электронная аппаратура создавалась на основе дискретных электрорадиоэлементов, которые с помощью соединительных проводов объединялись в функциональные узлы. Усложнение электронной аппаратуры, высокая трудоемкость операций по установке и электрическому монтажу дискретных элементов обусловили необходимость использования функционально законченных электронных узлов, изготовление которых было бы автоматизированным – интегральных микросхем, выполняющих функции преобразования, хранения, обработки, передачи и приема информации и определяющих тактико-технические, конструктивно-технологические, эксплуатационные и экономические характеристики ЭВМ.

Интегральной микросхемой (ИМС) называют функционально законченный электронный узел, элементы и соединения в котором конструктивно неразделимы и изготовлены одновременно в едином технологическом процессе.

По конструктивно-технологическому исполнению ИМС делятся на полупроводниковые и гибридно-пленочные.

Полупроводниковые ИМС имеют в своей основе кристалл полупроводникового материала, в поверхностном слое которого (путем внедрения атомов примеси) создаются все элементы ИМС – транзисторы, диоды, резисторы, конденсаторы, а соединения между ними выполняются по поверхности кристалла тонкопленочной технологией.

Полупроводниковые ИМС могут быть:

Однокристальными (монолитными);

Многокристальными (микросборки).

Однокристальные ИМС выполнены на одном кристалле полупроводникового материала, могут иметь индивидуальный корпус с внешними выводами для монтажа на печатной плате, а могут быть бескорпусными и входить в состав микросборок.

Микросборка представляет собой совокупность бескорпусных микросхем, смонтированных на общей коммутационной плате. Также в качестве компонентов в микросборке могут присутствовать бескорпусные электрорадиоэлементы.

Гибридно-пленочные ИМС состоят из пленочных пассивных элементов (резисторов, конденсаторов и т.п.), бескорпусных полупроводниковых кристаллов (транзисторов, диодов, ИМС) и коммутационных проводников, собранных на подложку из изоляционного материала.

Число элементов в ИМС характеризует ее степень интеграции. По этому параметру все микросхемы условно делят на малые (МИС - до 10 2 элементов на кристалл), средние (СИС - до 10 3), большие (БИС - до 10 4), сверхбольшие (СБИС - до 10 6), ультрабольшие (УБИС - до 10 9) и гигабольшие (ГБИС - более 10 9 элементов на кристалл).

Наиболее высокой степенью интеграции обладают цифровые ИМС с регулярной структурой: схемы динамической и статической памяти, постоянные и перепрограммируемые запоминающие устройства. Это связано с тем, что в таких схемах доля участков поверхности ИМС, приходящаяся на межсоединения, существенно меньше, чем в схемах с нерегулярной структурой.

В качестве активных элементов в полупроводниковых ИМС в вычислительной технике чаще всего используют униполярные (полевые) транзисторы со структурой «металл – диэлектрик (оксид) – полупроводник» (МДП- или МОП-транзисторы). Существует два типа МДП-транзисторов: n-типа, обладающие электронной проводимостью, и p-типа, характеризующиеся проводимостью дырочной. Принцип действия таких транзисторов достаточно прост. В подложке кремния формируются две легированные области с электронной (n-тип) или дырочной (p-тип) проводимостью. Эти области называются стоком и истоком. В обычном состоянии электроны (для n-типа) или дырки (для p-типа) хотя и диффундируют в область кремния за счет избыточной концентрации, но не способны перемещаться между стоком и истоком, поскольку неизбежны процессы рекомбинации в области кремния. Кроме того, за счет такой диффузии на границах контактов между легированными областями стока и истока и кремния возникают локальные электрические поля, препятствующие дальнейшей диффузии и приводящие к образованию обедненного носителями слоя. Поэтому в обычном состоянии прохождение тока между истоком и стоком невозможно. Для того чтобы иметь возможность переносить заряд между истоком и стоком, используется третий электрод, называемый затвором. Затвор отделен от кремниевой подложки слоем диэлектрика, в качестве которого выступает диоксид кремния (SiO2). При подаче потенциала на затвор создаваемое им электрическое поле вытесняет вглубь кремниевой подложки основные носители заряда кремния, а в образующуюся обедненную носителями область втягиваются основные носители заряда стока и истока (мы говорим об основных носителях заряда, а не конкретно о дырках или электронах, поскольку возможен и тот и другой вариант). В результате между истоком и стоком в подзатворной области образуется своеобразный канал, насыщенный основными носителями заряда. Если теперь между истоком и стоком приложить напряжение, то по каналу пойдет ток. При этом принято говорить, что транзистор находится в открытом состоянии. При исчезновении потенциала на затворе канал разрушается и ток не проходит, то есть транзистор запирается.

Также в полупроводниковых ИМС могут использоваться и другие типы транзисторов, например, биполярные.

Биполярная технология на 30 % сложнее МДП технологии. В МДП технологии меньше количество технологических операций, особенно высокотемпературных диффузии; при одинаковой сложности - меньше размер (20 % от биполярной технологии), и, следовательно, больше процент выхода годных микросхем (т.к. вероятность возникновения дефекта на меньшей площади меньше).

Высокая надежность МДП микросхем обусловлена: меньшими размерами элементов (малые размеры элементов и малое энергопотребление дает возможность широко применять резервирование и мажоритарную логику даже в сложных схемах); значительным уменьшением числа межэлементных соединений.

К достоинству биполярных микросхем можно отнести быстродействие.

11.2.2 Основные технологические особенности производства интегральных микросхем до 50 мин

Важнейшим принципом технологии полупроводниковых МС является технологическая совместимость элементов ИМС с наиболее сложным элементом, которым является транзистор. Другие элементы (диоды, резисторы, конденсаторы) должны по возможности содержать только те области, которые включает транзистор. таким образом, технологический процесс изготовления полупроводниковой ИМС базируется прежде всего на технологии изготовления транзисторных структур.

Второй важный принцип – групповая обработка МС. Она должна охватывать как можно большее число операций. При групповой обработке улучшается воспроизводимость параметров ИМС и существенно снижается трудоемкость изготовления отдельных ИМС.

Следующим важным принципом является универсальность процессов обработки . Он означает, что для изготовления совершенно различных по своим возможностям и назначению ИМС применяются одинаковые типовые технологические процессы, оборудование и режимы. Это позволяет одновременно, без переналадки оборудования, выпускать ИМС различного функционального назначения.

Четвертый принцип – унификация пластин-заготовок , содержащих максимальное количество признаков микросхемы.

Технологический процесс производства современных (полупроводниковых) СБИС представляет собой последовательность операций и переходов между ними, осуществляемых над исходными полупроводниковыми пластинами с целью получения микросхем с требуемыми эксплуатационными характеристиками. Технологические операции можно разделить на три группы: подготовительные, основные и заключительные.

К подготовительным операциям относят выращивание полупроводниковых слитков (например, методами Чохральского и зонной плавки), резку слитков на пластины, шлифовку, полировку, травление поверхности пластин, промывку в деионизованной воде, сушку и др.

К основным технологическим операциям относят литографию (фотолитографию в ультрафиолетовой области спектра и в жестком ультрафиолете, рентгенолитографию, электронно-лучевую и ионную литографии), эпитаксию (посредством испарения в глубоком вакууме и распыления ионами инертного газа, эпитаксию за счет реакций разложения и восстановления, жидкофазную и молекулярно-лучевую эпитаксии), окисление, травление (ионно-лучевое и ионно-плазменное), легирование (диффузия, ионная имплантация), отжиг (посредством галогенных ламп, отжиг электронным пучком, лазерный отжиг), осаждение на поверхность пластин различных по химическому составу пленок и др.

К заключительным технологическим операциям относят скрайбирование и ломку пластин на кристаллы, разварку внешних выводов, герметизацию кристаллов в корпусах и др.

Практически все перечисленные технологические операции сопровождаются контрольными операциями, позволяющими осуществлять отбраковку дефектных пластин и кристаллов. К ним относят, например, контроль содержания примесей в пластинах, контроль деформаций поверхности пластин и др.

При производстве различных типов гибридных интегральных микросхем технологический процесс может содержать различные операции (это зависит от выбранной технологии - тонкопленочной или толстопленочной, от того, какие пассивные элементы используются в схеме - есть ли, например, пленочные конденсаторы).

Укрупненные схемы технологических процессов производства полупроводниковых и гибридно-пленочных ИМС приведена на рисунках 11.1 и 11.2.

Рисунок 11.1 – Укрупненная схема технологического процесса изготовления полупроводниковых однокристальных ИМС.

Рисунок 11.2 – Укрупненная схема технологического процесса изготовления гибридно-пленочных ИМС.