Из чего делают плутоний. Оружейный и реакторный плутоний

Дозообразующие радионуклиды. Часть 5
Дата: 03/08/2011
Тема: Здоровье

Приведены основные характеристики дозообразующих радионуклидов. Основной упор сделан на изложение потенциальной опасности радионуклидов. В целях безопасности применения рассмотрены радиотоксические и радиобиологические эффекты воздействия радиоизотопов на организм и окружающую среду. Изложенное даёт возможность более осознанно относиться к радиационной опасности дозообразующих радионуклидов.

11. Цезий-137


Цезий (
лат. caesium - Cs, химический элемент I группы Периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинского caesius - голубой (открыт по ярко-синим спектральным линиям). Серебристо-белый металл из группы щелочных; легкоплавкий, мягкий, как воск; плотность 1,904 г/см 3 и имеет уд. вес 1,88 (при 15ºС), Т пл - 28,4ºС. На воздухе воспламеняется, с водой реагирует со взрывом. Основной минерал - поллуцит.


Известно 34 изотопа цезия с массовыми числами 114-148, из них только один (133 Cs) стабильный, остальные - радиоактивны. Изотопная распространенность цезия-133 в природе составляет приблизительно 100%. 133 Cs относится к рассеянным элементам. В незначительных количествах он содержится практически во всех объектах внешней среды. Кларковое (среднее) содержание нуклида в земной коре - 3,7∙10 -4 %, в почве - 5∙10 -5 %. Цезий - постоянный микроэлемент растительных и животных организмов: в живой фитомассе содержится в количестве 6∙10 -6 %, в организме человека - примерно 4 г. При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглащенной дозы, по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год .


В природе этот серебристо-белый щелочной металл встречается в виде стабильного изотопа Cs-133. Это редкий элемент со средним содержанием в земной коре 3,7∙10 -4 %. Обычный, природный цезий и его соединения не радиоактивны . Радиоактивен только искусственно получаемый изотоп 137 Cs. Долгоживущий радиоактивный изотоп цезия 137 Cs образуется при делении ядер 235 U и 239 Pu с выходом около 7%. При радиоактивном распаде 137 Cs испускает электроны с максимальной энергией 1173 кэВ и превращается в короткоживущий γ-излучающий нуклид 137m Ba (табл. 18). Обладает наивысшей среди щелочных металлов химической активностью, хранить его можно только в запаянных вакуумированных ампулах.


Таблица 18
Основные характеристики цезия-137
Изотоп
Основной вид
излучения
Период полураспада, T 1/2
Значение УВ вода , Бк/дм 3
Природные вариации ОА в водах (min-max), Бк/дм 3

137 Cs
(+ 137m Ba)


β(E β max = 1173 кэВ);
γ(E γ = 661 кэВ)

11,0 (НРБ-99)
8,0 (СанПиН 2.3.2.560-96)

n∙10 -3 - n∙10 -2

Металлический цезий применяют в фотоэлементах и фотоумножителях при изготовлении фотокатодов и как геттер в люминесцентных трубках. Пары цезия - рабочее тело в МГД-генераторах, газовых лазерах. Соединения цезия используют в оптике и приборах ночного видения.


В продуктах ядерной реакции деления имеются значительные количества разложенных радионуклидов цезия, среди которых наиболее опасен 137 Cs . Источником загрязнения могут быть и радиохимические заводы. Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики. К началу 1981 г. суммарная активность поступившего в окружающую среду 137 Cs достигла 960 ПБк. Плотность загрязнения в Северном и Южном полушариях и в среднем на земном шаре составляла соответственно 3.42; 0.86 и 3.14 кБк/м 2 , а на территории бывшего СССР в среднем - 3,4 кБк/м 2 .

При аварии на Южном Урале в 1957 г. произошёл тепловой взрыв хранилища радиоактивных отходов, и в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0,2 ПБк 137 Cs. При пожаре на РХЗ в Уиндскейле в Великобритании в 1957 г. произошёл выброс 12 ПБк радионуклидов, из них 46 ТБк 137 Cs. Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р. Течу в 1950 г. составил 102 ПБк, в том числе 137 Cs 12,4 ПБк. Ветровой вынос радионуклидов из поймы оз. Карачай на Южном Урале в 1967 г. составил 30 ТБк. На долю 137 Cs пришлось 0,4 ТБк.


Настоящей катастрофой стала в 1986 г. авария на Чернобыльской атомной электростанции (ЧАЭС): из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк. Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ. Известны случаи загрязнения внешней среды в результате небрежного хранения источников радиоактивного цезия для медицинских и технологических целей.


Цезий-137 используется в гамма-дефектоскопии, измерительной технике, для радиационной стерилизации пищевых продуктов, медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей. Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см 3 , энерговыделение около 1,27 Вт/ см 3 ).


Цезий-137 используется в датчиках предельных уровней сыпучих веществ в непрозрачных бункерах. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 137 Cs с более коротким периодом полураспада и более жестким гамма-излучением .


Широкое распространение получил в качестве источника γ-излучения. В медицине цезиевые источники, наряду с радиевыми, применяются в терапевтических γ-аппаратах и устройствах для внутритканевой и полостной гамма-терапии. С 1967 г. явление перехода между двумя сверхтонкими уровнями основного состояния атома цезия-137 используется для определения одной из основных единиц измерения времени - секунды.


Радиоцезий 137 Cs исключительно техногенный радионуклид, его наличие в изучаемой среде связано с испытаниями ядерного оружия или с использованием ядерных технологий. 137 Cs - β-γ-излучающий радиоизотоп цезия, один из главных компонентов техногенного радиоактивного загрязнения биосферы. Образуется в результате ядерных реакций деления. Содержится в радиоактивных выпадениях, сбросах, отходах радиохимических заводов. ОА 137 Cs в питьевой воде ограничивается уровнями 11Бк/дм 3 или 8 Бк/дм 3 .


Геохимической особенностью 137 Cs является его способность очень прочно задерживаться природными сорбентами. Вследствие этого при поступлении в ОПС его активность быстро уменьшается по мере удаления от источника загрязнения. Природные воды сравнительно быстро самоочищаются за счет поглощения 137 Cs взвесями и донными осадками .


Цезий может в значительных количествах накапливаться в сельскохозяйственных растениях, и, в частности, в семенах. Наиболее интенсивно поступает из водной среды и с высокой скоростью передвигается по растению. Внесение в почву калийных удобрений и известкование значительно снижают поглощение цезия растениями, и тем сильнее, чем выше доля калия .


Коэффициент накопления особенно высок у пресноводных водорослей и арктических наземных растений (особенно, лишайников), из животного мира - у северных оленей через ягель, которым они питаются. Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Этот нуклид поступает в основном с пищей в количестве 10 мкг/сут. Выводится из организма преимущественно с мочой (в среднем 9 мкг/сут). Цезий - постоянный химический микрокомпонент организма растений и животных. Главный накопитель цезия в организме млекопитающих - мышцы, сердце, печень. Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям.

Цезий-137 выводится в основном через почки и кишечник. Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите). В процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника. Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид, который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи.


Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Дозам в 148, 170 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

137 Cs принадлежит к группе радиоактивных веществ, равномерно распределяющихся по органам и тканям, по этой причине относится к среднеопасным по радиотоксичности нуклидам. Он обладает хорошей способностью проникать в организм вместе с калием посредством пищевых цепочек.


Основной источник поступления цезия в организм человека - загрязнённые нуклидом продукты питания животного происхождения. Содержание радиоактивного цезия в литре коровьего молока достигает 0,8-1,1 % от суточного поступления нуклида, козьего и овечьего - 10-20 %. Однако в основном он накапливается в мышечной ткани животных: в 1 кг мяса коров, овец, свиней и кур содержится 4,8, 20 и 26 % (соответственно) от суточного поступления цезия. В белок куриных яиц попадает меньше - 1,8-2,1 %. Ещё в больших количествах цезий накапливается в мышечных тканях гидробионтов: активность 1 кг пресноводных рыб может превышать активность 1 л воды более чем в 1000 раз (у морских - ниже) .


Основной источник цезия для населения России - молочные и зерновые продукты (после аварии на ЧАЭС - молочные и мясные), в странах Европы и США цезий поступает в основном с молочными и мясными продуктами и меньше - с зерновыми и овощными . Создаваемое таким образом постоянное внутреннее облучение наносит существенно больший вред, чем внешнее облучение этим изотопом .


Опубликованные методики измерения активности 137 Cs по его β-излучению предполагают радиохимическую подготовку пробы и выделение цезия с высокой степенью чистоты для исключения мешающего влияния других β-излучателей. Современные методы определения 137 Cs основаны, как правило, на регистрации гамма-излучения с энергией 661,6 кэВ. Они подразделяются на инструментальные, нижний предел определения (НПО) которых составляет 1-10 Бк/кг (или Бк/дм 3), и методы с предварительным химическим обогащением (НПО до 10 -2 Бк/кг). Для концентрирования 137 Cs из разбавленных растворов чаще всего используют его соосаждение с ферроцианидами никеля, меди, цинка, железа, кобальта, кальция, магния или сорбенты-коллекторы на их основе.


12. Плутоний

Плутоний (plutonium ) Pu - искусственный радиоактивный химический элемент III группы Периодической системы элементов Менделеева, атомный номер 94, трансурановый элемент, относится к актиноидам. Первый нуклид 238 Pu открыт в 1940 г. Г.Т.Сиборгом (G.Th.Seaborg), Э.М.Мак-Милланом (E.M. McMillan), Дж.Э.Кеннеди (J.E.Kennedy) и А.Ч.Валом (A.Ch.Wahl). Весной 1941 г. Сиборг с сотрудниками обнаружили и впервые выделили четверть микрограмма 239 Pu после распада 239 Np, образовавшегося при облучении 238 U ядрами тяжелого водорода (дейтонами). Вслед за ураном и нептунием новый элемент получил свое имя в честь открытой в 1930 г. планеты Плутон. С 24 августа 2006 г. по решению Международного астрономического союза Плутон более не является планетой Солнечной системы. В греческой мифологии Плутон (он же Аид) - бог царства мертвых .

Плутоний Pu - опаснейший тяжелый металл. Имеет 15 радиоактивных изотопов с массовыми числами от 232 до 246, в основном α-излучателей. На Земле имеются лишь следы этого элемента и только в урановых рудах. Величины Т½ всех изотопов плутония много меньше возраста Земли, и поэтому весь первичный плутоний (существовавший на нашей планете при её формировании) полностью распался. Однако ничтожные количества 239 Pu постоянно образуются при β-распаде 239 Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения).

Поэтому следы плутония обнаружены в урановых рудах в таких микроскопических количествах (0,4-15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи. Около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 миллиКюри (28 мг) плутония на км 2 от выпадения радиоактивных осадков. Это типичный продукт творения человеческих рук; его получают в ядерных реакторах из урана-238, который последовательно превращается в уран-239, нептуний-239 и плутоний-239.


Чётные изотопы плутоний-238, -240, -242 не являются делящимися материалами, но могут делиться под действием нейтронов высокой энергии (являются делимыми). Они не способны поддерживать цепную реакцию (за исключением плутония-240). Получены изотопы 232 Pu - 246 Pu; среди продуктов взрыва термоядерных бомб обнаружены также 247 Pu и 255 Pu. Наиболее устойчив малодоступный 244 Pu (α-распад и спонтанное деление, Т 1/2 = 8,2·10 7 лет, атомная масса 244,0642). В свободном виде хрупкий серебристо-белый металл. Следы изотопов 247 Pu и 255 Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.


На ядерные исследования и создание атомной промышленности в США, как позднее и в СССР, были брошены огромные силы и средства. В короткий срок были изучены ядерные и физико-химические свойства плутония (табл. 19) . Первый ядерный заряд на основе плутония был взорван 16 июля 1945 г. на полигоне Аламогордо (испытание под кодовым названием «Тринити»). В СССР первые опыты по получения 239 Pu были начаты в 1943-1944 гг. под руководством академиков И.В. Курчатова и В.Г. Хлопина. Впервые плутоний в СССР был выделен из облучённого нейтронами урана. В 1945 г. и в 1949 г. в СССР начал работать первый завод по радиохимическому выделению.


Таблица 19
Ядерные свойства важнейших изотопов плутония
Ядерные свойства
Плутоний-238
Плутоний-239
Плутоний-240
Плутоний-241
Плутоний-242

Период полураспада, годы






Активность, Ки/г






Тип радиоактив-ного распада

альфа-распад


альфа-распад


альфа-распад


бета-распад


альфа-распад


Энергия радиоактив-ного распада, МэВ






Примечание. Все изотопы плутония - слабые гамма-излучатели. Плутоний-241 превращается в америций-241 (мощный гамма-излучатель)


Лишь два изотопа плутония имеют практическое применение в промышленных и военных целях. Плутоний-238, получаемый в ядерных реакторах из нептуния-237, используется для производства компактных термоэлектрических генераторов. Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 МВт. Максимальная мощность такого же по массе химического источника тока - 5 Вт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu - исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от неё несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашёл применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности, срок службы которых достигает 5 лет и более.
Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторов энергии на борту космических исследовательских аппаратов. Благодаря долгому времени жизни и высокой тепловой мощности, этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

Из всех изотопов наиболее интересным представляется Pu-239, его период полураспада 24110 лет. Как делящийся материал, 239 Pu широко используют в качестве ядерного топлива в атомных реакторах (энергия, освобождающаяся при расщеплении 1 г 239 Pu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля), в производстве ядерного оружия (т.н. «оружейный плутоний») и в атомных и термоядерных бомбах, а также для ядерных реакторов на быстрых нейтронах и атомных реакторов гражданского и исследовательского назначения. Как источник α-излучения плутоний, наряду с 210 Po, нашел широкое применение в промышленности, в частности, в устройствах элиминации электростатических зарядов. Этот изотоп находит применение и в составе контрольно-измерительной аппаратуры .


Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. Температура плавления -641°C; температура кипения -3232°C; плотность - 19,84 (в альфа-фазе). Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образуя радужную плёнку (подобно радужной масляной плёнки), вначале светло-жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зелёный порошок оксида (PuO 2). Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности .

При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твёрдой форме, больше чем любой другой элемент.

Соединения плутония с кислородом, углеродом и фтором используются в ядерной промышленности (непосредственно или в качестве промежуточных материалов). Металлический плутоний не растворяется в азотной кислоте, но диоксид плутония растворяется в горячей концентрированной азотной кислоте. Однако в твердой смеси с диоксидом урана (например, в отработавшем топливе ядерных реакторов) растворимость диоксида плутония в азотной кислоте увеличивается, поскольку диоксид урана растворяется в ней. Эта особенность используется при переработке ядерного топлива (табл. 20).


Таблица 20
Соединения плутония и их применение
Соединения плутония
Применение

Диоксид плутония PuO 2

В смеси с диоксидом урана (UO 2) используется в качестве топлива для ядерных реакторов

Карбид плутония (PuC)
Дикарбид плутония (PuС 2)
Трикарбид плутония (PuC 3)

Потенциально могут использоваться в качестве топлива для реакторов-бридеров (размножителей)

Трифторид плутония (PuF 3)
Тетрафторид плутония (PuF 4)

Являются промежуточными соединениями при производстве металлического плутония


Нитраты плутония - Pu(NO 3) 4 и Pu(NO 3) 3

Не используются. Являются продуктами переработки (при извлечении плутония из отработавшего ядерного топлива)

Важнейшие соединения плутония: PuF 6 (легкокипящая жидкость; термически значительно менее стабилен, чем UF 6), твердые оксид PuO 2 , карбид PuC и нитрид PuN, которые в смесях с соответствующими соединениями урана могут использоваться как ядерное горючее.


Наибольшее распространение получили такие радиоизотопные устройства, как ионизационные сигнализаторы пожара или радиоизотопные индикаторы дыма. При механической обработке плутоний легко образует аэрозоли.


В природе образуется при β-распаде Np-239, который, в свою очередь, возникает при ядерной реакции урана-238 с нейтронами (например, нейтронами космического излучения). Промышленное производство Pu-239 также основано на этой реакции и происходит в атомных реакторах. Плутоний-239 первым образуется в ядерном реакторе при облучении урана-238, чем длительнее этот процесс, тем больше возникает более тяжелых изотопов плутония. Плутоний-239 должен быть химически отделен от продуктов деления и оставшегося в ОЯТ урана. Этот процесс называется репроцессингом. Поскольку все изотопы имеют одинаковое число протонов и разное - нейтронов, их химические свойства (химические свойства зависят от числа протонов в ядре) тождественны, поэтому очень трудно разделить изотопы с помощью химических методов.


Последующее отделение Pu-239 от урана, нептуния и высокорадиоактивных продуктов деления осуществляют на радиохимических заводах радиохимическими методами (соосаждением, экстракцией, ионными обменами др.) Металлический плутоний обычно получают востановлением PuF 3 , PuF 4 или PuO 2 парами бария, кальция или лития.

Затем используют его способность к расщеплению под действием нейтронов в атомных реакторах, а способность к самоподдерживающейся цепной реакции деления при наличии критической массы (7 кг) - в атомных и термоядерных бомбах, где он является основным компонентом. Критическая масса его α-модификации 5,6 кг (шар диаметром 4,1 см). 238 Pu используется в «атомных» электрических батарейках, обладающих длительным сроком службы. Изотопы плутония служат сырьем для синтеза трансплутониевых элементов (Am и др.).


Облучая Pu-239 нейтронами, можно получать смесь изотопов, из которых изотоп Pu-241, также как и Pu-239, является делящимся и мог бы быть использован для получения энергии. Однако, его период полураспада 14,4 года, что не позволяет его длительно сохранять, к тому же, распадаясь, он образует неделящийся Am-241 (α-, γ-радиоактивный) с периодом полураспада 432,8 года. Получается, что примерно через каждые 14 лет количество Am-241 в окружающей среде удваивается. Обнаружить его, как и другие трансурановые элементы, обычной γ-спектрометрической аппаратурой сложно и требуются весьма специфичные и дорогостоящие методы обнаружения. Изотоп Pu- 242 по ядерным свойствам наиболее похож на уран-238, Am-241, получавшийся при распаде изотопа Pu-241, использовался в детекторах дыма.


Америций-241, также как и другие трансурановые элементы (нептуний, калифорний и другие), является экологически опасным радионуклидом, являясь преимущественно α-излучающим элементом, обуславливающим внутреннее облучение организма.


Накопленного на Земле плутония более чем достаточно . Его производства абсолютно не требуется как для обороны, так и энергетики. Тем не менее, из 13 существовавших в СССР реакторов, производивших оружейный плутоний, продолжают работать 3: два из них в г. Северске. Последний такой реактор в США был остановлен в 1988 г. .


Качество плутония определяется по процентному содержанию в нем изотопов (кроме плутония-239) (табл. 21).


На сентябрь 1998 г. цены на плутоний, установленные изотопным отделением Ок-риджской Национальной лаборатории (ORNL) были таковы: $8,25/мг за плутоний-238 (97% чистоты); $4,65/мг за плутоний-239 (>99,99%); $5,45/мг за плутоний-240 (>95%); $14,70/мг за плутоний-241 (>93%) и $19,75/мг за плутоний-242.

Таблица 21
Качество плутония

Эта классификация плутония по качеству, разработанная Департаментом энергетики США, достаточно произвольна. Например, из топливного и реакторного плутония, менее пригодных для военных целей, чем оружейный, также можно сделать ядерную бомбу. Плутоний любого качества может быть применен для создания радиологического оружия (когда радиоактивные вещества распыляются без осуществления ядерного взрыва).


Всего 60 лет назад зеленые растения и животные не содержали в своем составе плутоний, сейчас до 10 т его распылено в атмосфере. Около 650 т наработано атомной энергетикой и свыше 300 т военным производством. Значительная часть всего производства плутония находится в России .


Попадая в биосферу, плутоний мигрирует по земной поверхности, включаясь в биохимические циклы. Плутоний концентрируется морскими организмами: его коэффициент накопления (т.е. отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона (смешанного) - около 2300, для моллюсков - до 380, для морских звёзд - около 1000, для мышц, костей, печени и желудка рыб - 5,570, 200 и 1060 соответственно. Наземные растения усваивают плутоний главным образом через корневую систему и накапливают его до 0,01% от своей массы. С 70-х гг. 20 века доля плутония в радиоактивном загрязнении биосферы возрастает (облучённость морских беспозвоночных за счёт плутония становится больше, чем за счёт 90 Sr и 137 Cs). ПДК для 239 Pu в открытых водоёмах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3ּ 10 -5 Бк/л .


Поведение плутония в воздушной среде определяет условия для безопасного хранения и обращения с ним в процессе выработки (табл. 22). Окисление плутония создает риск для здоровья людей, так как диоксид плутония, будучи устойчивым соединением, легко попадает в легкие при дыхании. Его удельная активность в 200 тыс. раз выше, чем у урана, к тому же освобождения организма от попавшего в него плутония практически не происходит в течение всей жизни человека.


Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, концентрация его там практически постоянна. Период полувыведения из печени - 40 лет. Хелатные добавки могут ускорить выведение плутония .

Таблица 22
Изменение свойств плутония в воздушной среде
Форма и условия среды
Реакция плутония

Металлические слитки
при комнатной температуре

Относительно инертен,
медленно окисляется

Металлический порошок
при комнатной температуре

Быстро реагирует с образованием
диоксида плутония (PuO 2)

Порошок мелкого измельчения:
с частицами d<1 мм и d>1 мм
сс частицами d>1 мм

Произвольно возгорается:
при температуре 150°С и 500°С соответственно

При повышенных температуре и влажности

Реагирует с образованием
диоксида плутония (PuO 2)


Плутоний называют «ядерным ядом», его допустимое содержание в организме человека оценивается нанограммами. Международная комиссия по радиологической защите (МКРЗ) установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикоКюри/м 3 . Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 наноКюри (0.56 микрограмма) и 16 наноКюри (0.23 микрограмма) для лёгочной ткани.

Поглощение 500 мг плутония как мелкораздробленного или растворённого материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в лёгких размера 1-3 микрона ведёт к смерти от отёка лёгких за 1-10 дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза примерно за месяц. Для доз много меньших этих величин проявляется хронический канцерогенный эффект.
На протяжении всей жизни риск развития рака лёгких для взрослого человека зависит от количества попавшего в тело плутония. Приём внутрь 1 микрограмма плутония представляет риск в 1 % развития рака (нормальная вероятность рака 20 %). Соответственно 10 микрограмм увеличивают риск рака с 20 % до 30 %. Попадание 100 микрограмм или более гарантирует развитие рака лёгких (обычно через несколько десятилетий), хотя свидетельства повреждения лёгких могут появиться в течении нескольких месяцев. Если он проникает в систему кровообращения, то с большой вероятностью начнёт концентрироваться в тканях, содержащих железо: костном мозге, печени, селезёнке. Если 1,4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак.

Дело в том, что Pu-239 является α-излучателем, и каждая его α-частица в биологической ткани образует вдоль своего короткого пробега 150 тыс. пар ионов, повреждая клетки, производя различные химические превращения. 239 Pu принадлежит к веществам со смешенным типом распределения, поскольку накапливается не только в костном скелете, но и в печени. Очень хорошо удерживается в костях и практически не удаляется из организма благодаря замедленности обменных процессов в костной ткани. По этой причине данный нуклид принадлежит к разряду наиболее токсичных .


Находясь в организме, плутоний становится постоянным источником α-излучения для человека, вызывая костные опухоли, рак печени и лейкемию, нарушения кроветворения, остеосаркомы, рак лёгких, являясь, таким образом, одним из самых опасных канцерогенов (табл. 23).

Список литературы


1. Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38--99. - М., ВИНИТИ РАН.
Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38--99. - М., ВИНИТИ РАН.2. Баженов В.А., Булдаков Л.А., Василенко И.Я. и др. Вредные химические вещества. Радиоактивные вещества: Справочное издание //Под ред. В.А. Филова и др.-Л.: Химия, 1990. - 464 с.
3. Химическая энциклопедия: в 5 т. // Гл. ред. Зефиров Н.С. - М.: Большая Российская энциклопедия, 1995. - Т. 4, с. 153-154 (радий), с. 282 (рубидий), с. 283 (рутений), с. 300 (свинец), с. 560 (технеций), с. 613 (торий); 1999. - Т. 5, с. 41 (уран), с. 384 (цирконий).
4. Химическая энциклопедия: в 5 т. // Гл. ред. Кнунянц И.Л. - М.: Советская энциклопедия, 1990.- Т.1, с. 78 (актиний), с. 125 (эмериций), с. 241 (барий); Т. 2, с. 284 (калий), с. 286 (калифорний), с.414 (кобальт), с. 577 (лантан); 1992. Т. 3, с. 580 (плутоний).
5. Несмеянов А. Н. Радиохимия. - М.: Химия, 1978. - 560 с.
6. Широков Ю.М., Юдин Н.П. Ядерная физика. - М., Наука, 1980.
7. Козлов В.Ф. Справочник по радиационной безопасности. - 5-е изд., перераб. и доп. - М.: Энергоатомиздат, 1999. - 520 с.
8. Моисеев А.А., Иванов В.И. Справочник по дозиметрии и радиационной гигиене. - М.: Энергоатомиздат, 1992. - 252 с.
9. Кириллов В.Ф., Книжников В.А., Коренков И.П. Радиационная гигиена // Под ред. Л.А. Ильина. - М.: Медицина, 1988. - 336 с.
10. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. - Томск: ТПУ, 1997. - 384 с.
11. Бэгнал К. Химия редких радиоактивных элементов. Полоний - актиний: Пер. с англ. // Под ред. Ю.В. Гагаринского. - М.: Изд-во иностр. лит-ры. - 256 с.
12. Гусев Н.Г., Рубцов П.М., Коваленко В.В., Колобашкин В.В. Радиационные характеристики продуктов деления: Справочник. - М.: Атомиздат, 1974. - 224 с.
13. Трансурановые элементы в окружающей среде // Под ред. У.С. Хэнсона: Пер. с англ. - М.: Мир, 1985. - 344 с.
14. Смыслов А.А. Уран и торий в земной коре. - Л.: Недра, 1974. - 232 с.
15. Ионизирующие излучения: источники и биологические эффекты. Научный комитет ООН по действию атомной радиации (НКДАР). Доклад за 1982 г. в Генеральной Ассамблее. Т.1. - Нью-Йорк, ООН, 1982. - 882 с.
16. Источники, эффекты и опасность ионизирующей радиации // Доклад Научного комитета ООН по действию атомной радиации Генеральной Ассамблее за 1988 год. - М.: Мир, 1992. - 1232 с.
17. Василенко И.Я. Токсикология продуктов ядерного деления. - М.: Медицина, 1999. - 200 с.
18. Израэль Ю.А., Стукин Е.Д. Гамма - излучение радиоактивных выпадений. - М.: Атомиздат, 1967. - 224 с.
19. Алексахин Р.М., Архипов Н.П., Василенко И.Я. Тяжелые естественные радионуклиды в биосфере. - М.: Наука, 1990. - 368 с.
20. Криволуцкий Д.А. и др. Действие ионизирующей радиации на биогеоценоз. - М.: Гидрометеоиздат, 1977. - 320 с.
21. Булдаков Л.А. Радиоактивные вещества и человек.-М.: Энергоатомиздат, 1990 - 160 с.
22. Рузер Л.С. Радиоактивные аэрозоли //Под ред. А.Н. Мартынюка. - М.: Энергоатомиздат, 2001. - 230 с.
23. Журавлев В.Ф. Токсикология радиоактивных веществ. - М.: Энергоатомиздат, 1990. - 336 с.
24. Моисеев А.А. Цезий-137. Окружающая среда - человек. - М.: Энергоатомиздат, 1985. - 121 с.
25. Тихонов М.Н., Муратов О.Э. Альтернативный ядерно-топливный цикл: необходимость и актуальность // Экология промышленного производства, 2009, вып. 4,с. 40-48.
26. Алексахин Р.М., Васильев А.В., Дикарев В.Г. и др. Сельскохозяйственная радиоэкология. - М., Экология, 1991.
27. Чалов П.И. Изотопное фракционирование природного урана. - Фрунзе: Илим, 1975.
28. Пилипенко А.Т. Натрий и калий // Справочник по элементарной химии. - 2-е изд. - Киев: Наукова думка, 1978, с. 316-319.
29. Тихонов М.Н. Радоновая опасность: источники, дозы и нерешенные вопросы // Экологическая экспертиза. Обз.инф., 2009, вып. 5, с. 2-108. - М., ВИНИТИ РАН.
30. Гудзенко В.В., Дубинчук В.Т. Изотопы радия и радона в природных водах. - М.: Наука, 1987. - 157 с.
31. Мартынюк Ю.Н. К вопросу о качестве питьевой воды по радиационному признаку // АНРИ, 1996, №1, с. 64-66.
32. Борисов Н.Б., Ильин Л.А., Маргулис У.Я. и др. Радиационная безопасность при работе с полонием-210 // Под ред. И.В. Петрянова и Л.А. Ильина. - М.: Атомиздат, 1980. - 264 с.
33. Методика выполнения измерений объемной активности полония-210 и свинца-210 в природных водах альфа-бета-радиометрическим методом с радиохимической подготовкой. - М., 2001.
34. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: Справочник. - М.: Энергоатомиздат, 1991. - 255 с.
35. Болсуновский А.Я. Производство ядерных материалов в России и загрязнение окружающей среды. - В кн.: Атом без грифа «Секретно»: точки зрения. - Москва-Берлин, 1992, с. 9-29.
36. Федорова Е.А., Пономарева Р.П., Милакина Л.А. Закономерности поведения 14 С в системе атмосфера-растение в условиях непостоянной концетрации СО 2 в воздухе // Экология, 1985, №5, с. 24-29.
37. Пономарева Р.П., Милакина Л.А., Савина В.И. Закономерности поведения углерода-14 в пищевых цепях человека в условиях действия локального источника выбросов // Атомная промышленность: окружающая среда и здоровье населения / Под ред. Л.А. Булдакова, С.Н. Демина. - М., 1988, с. 240-249.
38. Рублевский В.П., Голенецкий С.П., Кирдин Г.С. Радиоактивный углерод в биосфере. - М.: Атомиздат, 1979. - 150 с.
39. Артемова Н.Е., Бондарев А.А., Карпов В.И., Курдюмов Б.С. и др. Допустимые выбросы радиоактивных и вредных химических веществ в приземном слое атмосферы. - М.: Атомиздат, 1980. - 235 с.
40. Демин С.Н. Проблема углерода-14 в районе ПО «Маяк» // Вопросы радиационной безопасности, 2000, №1, с. 61-66.
41. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Атомная энергия, 1958, Т. 4, №6, с. 576-580.
42. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Наука и всеобщая безопасность, 1991, Т. 1, №4, с. 3-8.
43. Германский А.М. Атмосферный радиоуглерод и смертность в Дании. Интернет-журнал «Коммерческая биотехнология», 2005.
44. Эванс Э. Тритий и его соединения. - М., Атомиздат, 1970.
45. Ленский Л.А. Физика и химия трития. - М., Атомиздат, 1981.
46. Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. - М., Атомиздат, 1985.
47. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. - М., Атомиздат, 1987.
48. Леенсон И.А. 100 вопросов и ответов по химии. - М., АСТ-Астрель, 2002.
49. Дубасов Ю.В., Окунев Н.С., Пахомов С.А. Мониторинг радионуклидов ксенона и криптона-85 в Северо-Западном регионе России в 2007-2008 гг. // Сб.докл. III Межд. ядерного форума 22-26 сент. 2008 г. - СПб.: НОУ ДПО «АТОМПРОФ», 2008, с. 57-62.
50. Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, йода и их соединений. 2-е изд. - М.: Ин.лит., 1995. - 562 с.
51. Бэгнал К. Химия селена, теллура и полония. - М., 1971.
52. Методические указания МУ 2.6.1.082-96. Оценка дозы внутреннего облучения щитовидной железы йодом-131 по результатам определения содержания йода-129 в объектах окружающей среды (Утв. Зам. Главного государственного санитарного врача РФ 24 мая 1996 г.).
53. Гаврилин Ю.И., Волков В.Я., Макаренкова И.И. Ретроспективное восстановление интегральных выпадений йода-131 по населенным пунктам Брянской области России на основе результатов определения в 2008 г. содержания йода-129 в почве // Радиационная гигиена, 2009, Т. 2, №3, с. 38-44.
54. Василенко И.Я., Василенко О.И. Стронций радиоактивный // Энергия: экономика, техника, экология, 2002, №4, с. 26-32.
55. Василенко И.Я. Радиоактивный цезий-137 // Природа, 1999, №3, с. 70-76.
56. Плутониевая экономика: выход или тупик. Плутоний в окружающей среде // Сост. Миронова Н.И. - Челябинск, 1998. - 74 с.
57. Блюменталь У.Б. Химия циркония. - М., 1963.
58. Перцов Л.А. Ионизирующее излучение биосферы. - М.: Атомиздат, 1973. - 288 с.
59. Популярная библиотека химических элементов. Кн.2. Серебро-нильсборий и далее. - 3-е изд. - М.: Наука, 1983. - 573 с.
60. Огородников Б.И. Торон и его дочерние продукты в проблеме ингаляционного облучения // Атомная техника за рубежом, 2006, №6, с. 10-15.
61. Ярмоненко С.П. Радиобиология человека и животных.-М.: Высшая школа, 1988.-424 с.
62. Бабаев Н.С., Демин В.Ф., Ильин Л.А. и др. Ядерная энергетика, человек и окружающая среда /Под ред. акад. А.П. Александрова. - М.: Энергоатомиздат, 1984. - 312 с.
63. Абрамов Ю.В. и др. Определение доз внешнего облучения органов и тканей в соответствии с требованиями НРБ -99 в производственных условиях //Медицина экстремальных ситуаций, 2000, № 3 (6), с.55-60.
64. Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры /Под общ. ред. Л.А.Ильина и В.А. Губанова. - М.: ИздАТ, 2001. -752 с.
65. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений: Справочник, 4-е изд. - М.: Энергоатомиздат, 1995.
66. Радиационная медицина. Т.2. Радиационные поражения человека / Под общ. ред. акад. РАМН Л.А.Ильина. -М.:ИздАТ, 2001. -432 с.
Плутоний-239, основной изотоп плутония, используемый в ядерных взрывных устройствах, получается в любом ядерном реакторе, работающем на урановом топливе при захвате нейтрона ядром урана-238. В России практически весь оружейный плутоний был наработан в специальных промышленных реакторах. Характерной особенностью промышленных реакторов является относительно невысокая степень использования топлива - характерное значение глубины выгорания составляет 400-600 МВт-дн/т. Это связано с тем, что при большей глубине выгорания в топливе образуется значительное количество изотопа плутония-240. Изотоп Ри-240 является довольно интенсивным излучателем спонтанных нейтронов и потому его присутствие значительно ухудшает качество плутония как оружейного материала.82 По классификации, принятой в США, оружейным плутонием считается материал с содержанием Ри-240 менее 5.8%.
Выделение плутония из отработавшего топлива осуществляется радиохимическими методами на специальных производствах. Из-за высокой радиоактивности отработавшего топлива все операции по его переработке ведутся с помощью дистанционных средств в "каньонах” с толстыми бетонными стенами. Процесс производства плутония сопровождается образованием больших объемов радиоактивных и токсичных отходов и требует создания сложной инфраструктуры для их обработки и захоронения.
Промышленные реакторы использовались для наработки и других ядерных оружейных материалов, в частности трития, используемого в составе тритий- дейтериевой смеси для усиления первичных узлов термоядерного оружия. Производство трития для оружейных целей как правило осуществляется в ядерном реакторе при облучении нейтронами ядер изотопа лития-6.83 Наработанный тритий выделяется из литиевых мишеней при их обработке в вакуумной печи и очищается химическими методами. В начальные годы развития ядерного арсенала в реакторах также нарабатывался полоний-210, использовавшийся при производстве бериллий-полониевых нейтронных источников, необходимых для инициирования цепной реакции при подрыве ядерного заряда. (В последующие годы бериллий-полониевые инициаторы были заменены внешними системами нейтронного инициирования на основе электростатических трубок.)84 Наработка полония осуществлялась посредством облучения нейтронами мишеней из висмута.
Развитие реакторной технологии
Для производства плутония в СССР использовались в основном реакторы канального типа, использующие в качестве замедлителя нейтронов графит, и охлаждаемые водой, прокачиваемой по каналам с топливными элементами. Топливо - блочки природного металлического урана в алюминиевой оболочке - загружалось в вертикальные технологические каналы, проделанные в графитовой кладке ре
акторной зоны. Для выравнивания радиального распределения мощности и потоков нейтронов в реакторной зоне водо-графитных промышленных реакторов по ее периферии располагались каналы с топливом из высокообогащенного урана.
Всего в СССР было сконструировано три поколения графитовых реакторов. Реактором первого поколения является реактор А, пущенный в эксплуатацию в июне 1948 г. в Челябинске-40 (впоследствии Челябинск-65). Спроектированный Н. А. Доллежалем реактор имел мощность 100 МВт (позднее она была доведена до 900 МВт). Охлаждение реактора осуществлялось по прямоточной схеме -вода- охладитель забиралась из внешнего источника, прокачивалась через реакторную зону и сбрасывалась в окружающую среду. Топливо (около 150 т урана) располагалось в вертикальных каналах 1353-тонной графитовой кладки.85
Реактор второго поколения (например, реактор АВ-1, пущенный в эксплуатацию в 1950 г.) представлял собой вертикальный цилиндр графитовой кладки с вертикальными каналами для топлива и управляющих стержней. По сравнению с реактором А, АВ-1 имел большую мощность и был более безопасным. Как и реактор А, реакторы второго поколения были прямоточными и использовались исключительно для наработки оружейного плутония.86
Реакторы третьего поколения, построенные после 1958 г., проектировались как реакторы двойного назначения.88 Представителями реакторов третьего поколения являются работающие до настоящего времени реакторы серии АДЭ. Каждый такой реактор имеет мощность около 2000 МВт и нарабатывает примерно 0.5 т оружейного плутония в год. Получаемый в процессе работы пар используется для производства примерно 350 МВт тепла и 150 МВт электричества. В отличие от реакторов первого и второго поколений, реакторы третьего поколения имеют двухконтурную систему охлаждения с замкнутой циркуляцией воды по первому контуру, теплообменник, парогенератор, и турбину для производства электричества.

Мощность

до 2000 Мвт

Производство электроэнергии

150-200 Мвт (э)

Производство тепла

300-350 Гкал/ч

Замедлитель

графит

Теплоноситель

вода

Число каналов

2832

Число топливных элементов в канале

66-67

300-350 т

75 кг

Глубина выгорания топлива

600-1000 МВт-дн/т

Топливная композиция (природный уран)

металлический природный уран

Топливная композиция (ВОУ)

дисперсное (8.5% U02 в алюминиевой матрице)

Диаметр стержня

35 мм

Материал оболочки

алюминиевый сплав

Толщина оболочки

gt; 1 мм

Хранение отработавшего топлива

мокрое

Стандартное время хранения

6 месяцев

Максимально допустимое время хранения

18 месяцев

Табл. 3-2. Характеристики реактора АДЭ87

Развитие радиохимической технологии
Развитие отечественной школы радиохимии началось в Радиевом институте АН СССР под руководством академика В. Г. Хлопина. В 1946 г. в РИАНе была предложена первая в стране ацетатно-фторидная технология промышленного выделения плутония и урана из облученного уранового топлива. Технология была проверена и отработана на опытной радиохимической установке У-5 в институте НИИ-9 и внедрена на первом радиохимическом заводе (завод Б) в Челябинске-40 (впоследствии Челябинск-65).
На начальном этапе эксплуатации химический передел завода Б основывался на окислительно-восстановительном процессе ацетатного осаждения уранил- триацетата. Этот процесс проходил в две стадии - на первой осуществлялась очистка плутония и урана от продуктов деления и отделение плутония от урана в ходе ацетатного осаждения. На второй стадии осуществлялся аффинаж (доочистка) плутония при его осаждении с помощью фторида лантана.
Радиохимическая технология постоянно совершенствовалась с целью повышения ее безопасности, полноты извлечения и чистоты плутония и урана и снижения расхода материалов и объемов образующихся отходов. Вследствие высокой химической агрессивности фтора, использование лантанно-фторидной технологии было дорогим и небезопасным. Поэтому при разработке второго радиохимического завода (завод ББ), построенного в Челябинске-40 в конце 50-х годов, было решено отказаться от лантанно-фторидной технологии в пользу использования двойного цикла ацетатного осаждения. Ацетатная технология, однако, также была весьма дорогостоящей, приводила к большим объемам растворов и отходов и требовала создания целого ряда вспомогательных производств. Поэтому в начале 60-х годов второй цикл ацетатного осаждения (на стадии аффинажа плутония) был заменен сорбционными методами, основанными на селективном поглощении плутония ионно-обменными смолами. Введение сорбционной технологии значительно повысило качество продукции завода. Однако использование новой технологии оказалось небезопасным и, после взрыва сорбционной колонны, произошедшего в Челябинске в 1965 г.,90 было решено начать работы по внедрению экстракционных технологий. (Первые исследования по экстракционным технологиям были начаты в конце 40-х годов.) Экстракционные технологии стали основой господствующей в настоящее время схемы переработки отработавшего реакторного топлива типа Пурекс (Purex) и используются на всех радиохимических заводах России. Пурекс представляет собой многостадийный процесс, основанный на селективной экстракции плутония и урана с помощью трибутилфос- фата.
В создании радиохимических технологий принимали участие многие институты и организации. Научные разработки и отработка радиохимических технологий велись в Радиевом институте, ВНИИ неорганических материалов, ВНИИ химической технологии.91 Основные конструкторские разработки и производство оборудования осуществлялись Свердловским НИИ химического машиностроения. Проектные решения проходили экспертизу или разрабатывались расположенным в Ленинграде Всесоюзным научно-исследовательским и проектным институтом энерготехнологий (ВНИПИЭТ). Основную тяжесть по проверке научно- технических решений и внедрении технологий несли непосредственно комбинаты по производству плутония.
Комплекс по производству плутония
Промышленное производство плутония осуществлялось интегрированным комплексом трех комбинатов: Челябинск-65, Томск-7 и Красноярск-26.

Челябинск-65 (ПО "Маяк")
Комбинат Челябинск-65, известный в настоящее время как ПО "Маяк",92 расположен на севере Челябинской области в г. Озерск. Основанный в 1948 г., комбинат был первым в СССР комплексом по производству плутония и плутониевых изделий. Наработка плутония осуществлялась пятью уран-графитовыми реакторами (А, ИР-АИ, АВ-1, АВ-2 и АВ-3), пущенными между 1948 и 1955 гг.93 В период между 1987 и 1990 гг. все уран-графито вые реакторы были остановлены. В настоящее время они используются для научных наблюдений и готовятся к демонтажу. В состав реакторного завода в разное время входили (и входят) реакторы и других типов, использовавшиеся для производства трития и других изотопов.
Облученное топливо промышленных реакторов перерабатывалось на входившем в состав комбината радиохимическом заводе (завод Б). Радиохимический завод начал переработку облученного урана 22 декабря 1948 г. и первые годы его эксплуатации были исключительно трудными. Отсутствие опыта и знаний, несовершенство технологий и аппаратуры, высокая коррозионность и радиоактивность технологических растворов обуславливали высокую аварийность и переоблучение персонала.94 Завод был неоднократно реконструирован в начале 50-х годов и продолжал устойчиво работать до 1959 г. С этого момента объемы производства начали снижаться и в начале 60-х годов завод был остановлен. Впоследствии на месте завода Б был построен радиохимический завод РТ-1.
Переработка топлива промышленных реакторов была продолжена на заводе ББ. Строительство завода ББ, проектировавшегося для замещения первого радиохимического производства, было начато в 1954 г. и полностью закончено в сентябре 1959 г. В 1987 г., после остановки двух из пяти нарабатывавших плутоний реакторов, завод ББ был остановлен и выделение оружейного плутония в Челябинске-65 было прекращено. Между 1987 и 1990 гг. облученное топливо продолжавших работать промышленных реакторов направлялось для переработки на радиохимический завод в Томске-7.
Плутониевая продукция радиохимических заводов передавалась на химикометаллургический завод В. Завод В был построен в 1948 г. для производства металлического плутония и деталей ядерных боеприпасов.95 Вторая очередь завода позволила изготавливать оружейные детали из урана. В настоящее время завод продолжает работы по переработке делящихся оружейных материалов и производству деталей боеприпасов. В 1997 г. завод, как и химико-металлургическое производство в Томске-7, включился в работу по разобогащению оружейного урана.
Кроме производства плутония, в Челябинске-65 было налажено производство трития и других специальных изотопов.96 С 1951 г. в этих целях использовался 50-МВт реактор АИ, использовавший в качестве топлива уран с обогащением 2%. Несколько позднее наработка трития была организована в тяжеловодных реакторах, первым из которых был реактор ОК-180.97 (Производство трития на ОК-180 началось, по всей видимости, только после 1954 г.) 27 декабря 1955 г. был принят в эксплуатацию второй тяжеловодный реактор-ОК-190. Эти реакторы были остановлены в 1965 и 1986 гг. и им на смену пришли две новые установки. В 1979 г. в эксплуатацию был пущен" легководный (водо-водяной) реактор "Руслан", а в 1986-1987 гг. начал работу тяжеловодный реактор "Людмила".98 Реакторы "Руслан" к "Людмила" продолжают использоваться для производства трития, изотопного сырья для радиоизотопного завода (плутония-238, кобальта-60, углерода-14, иридия-192 и других) и радиационно-легированного кремния.
Выделение изотопов осуществляется комплексом завода РТ-1. Облученное с целью производства трития топливо передается на входящий в состав ПО “Маяк" тритиевый завод-единственное в стране предприятие по производству
трития и тритиевых узлов для ядерного оружия." Изотопная продукция поступает на радиоизотопный завод (в эксплуатации с 1962 г.) для выпуска альфа-, гамма- и бета-источников радиоизлучения, термических генераторов на основе плутония-238 и стронция-90 и широкого набора радионуклидов.100
Комбинат "Маяк" является важным звеном топливного цикла реакторов АЭС и других реакторных установок. Значительная часть инфраструктуры старого оборонного завода Б вошла в состав радиохимического завода РТ-1, пущенного в эксплуатацию в 1976 г. Первая линия РТ-1 была спроектирована для переработки высокообогащенного уран-алюминиевого топлива промышленных и судовых реакторов. В 1978 г. завод начал переработку топлива реакторов ВВЭР-440. В настоящее время три технологические линии РТ-1 используются для переработки топлива реакторов ВВЭР-440 и БН-600, топлива транспортных и исследовательских реакторов и ВОУ топлива промышленных реакторов. Переработка топлива осуществляется по схеме Пурекс. В состав завода также входят сооружения приемки и промежуточного хранения отработавшего топлива, установки для хранения, переработки и остекловывания радиоактивных отходов и хранилища выделенных урана и плутония. Завод РТ-1 способен ежегодно перерабатывать 400 т топлива реакторов АЭС и 10 т топлива транспортных реакторов (20-30 реакторных зон транспортных установок в год).
Помимо переработки топлива, в сферу деятельности РТ-1 входят работы по обращению с радиоактивными отходами и опытные работы на исследовательских


Реактор


Тип

Назначение

Мощность
Мвт

ПО “Маяк" (Челябинск-65)




А

1948-1987

водо-графитовый, прямоточный

плутоний

100/900

ИР-АИ

1951-1987

водо-грэфитовый, прямоточный

плутоний

50/500

АВ-1

1950-1989

водо-графитовый, прямоточный

плутоний

300/1200

АВ-2

1951-1990

водо-графитовый, прямоточный

плутоний

300/1200

АВ-3

1952-1990

водо-графитовый, прямоточный

плутоний, тритий

300/1200

ОК-180

1951-1965

тяжеловодный

тритий

100?

ОК-1ЭО

1955-1986

тяжеловодный

тритий

100?

Руслан

1979-н.в.

водо-водяной

тритий, изотопы

Нет данных

Людмила

1986-н.в.

тяжеловодный

тритий, изотопы

нет данных

Сибирский химический комбинат (Томск-7)



И-1

1955-1990

водо-графитовый, прямоточный

плутоний

600/1200

ЭИ-2
/>1956-1990

плутоний

600/1200

АДЭ-3

1961-1992

водо-графитовый, двухконтурный

плутоний

1600/1900

АДЭ-4

1964-н.в.

водо-графитовый, двухконтурный

плутоний

1600/1900

АДЭ-5

1965-н.в.

водо-графитовый, двухконтурный

плутоний

1600/1900

Горно-химический комбинат (Красноярск-26)



АД

1958-1992

водо-графитовый, прямоточный

плутоний

1600/1800

АДЭ-1

1961-1992

водо-графитовый, прямоточный

плутоний

1600/1800

АДЭ-2

1964-н.в.

водо-графитовый, двухконтурный

плутоний

1600/1800

Табл. 3-3. Построенные в СССР промышленные реакторы

и полупромышленных установках по производству смешанного уран-плутониево- го оксидного топлива (МОКС топливо). В Челябинске-65 было начато строительство завода по производству плутониевого топлива для быстрых реакторов (Цех 300).101 Строительство наполовину построенного завода было заморожено в 1989 г.
Челябинск-65 является одной из основных площадок, осуществляющих хранение делящихся материалов. На заводе РТ-1 хранится примерно 30 т энергетического плутония.102 На комбинате также хранится значительное количество оружейных делящихся материалов, извлеченных из ликвидируемых ядерных боеприпасов. Летом 1994 г. в Челябинске-65 было начато строительство центрального хранилища для оружейных урана и плутония, высвобожденных при демонтаже ядерного оружия. Предполагается, что первая очередь хранилища, способная принять 25 тысяч контейнеров с оружейными материалами, будет пущена в эксплуатацию в 1999 г.; строительство второй очереди увеличит вместимость хранилища до 50 тысяч контейнеров. Согласно проекту, разработанному Санкт-Петербургским институтом ВНИПИЭТ, хранилище должно обеспечить безопасное хранение материалов в течение 80-100 лет.103
Комбинат обладает широкой научно-технической базой для поддержки работы основных производств, которая включает в себя центральную заводскую лабораторию, приборный завод, инструментальный завод, машиноремонтный цех и специализированное стройуправление. В городе действует отделение Московского инженерно-физического института-головного вуза страны в области прикладной ядерной физики.
Томск-7 (Сибирский химический комбинат)
Сибирский химический комбинат в Томске-7104 был основан в 1949 г. как комплекс по производству оружейных делящихся материалов и деталей из них. Наработка плутония в Томске-7 осуществлялась пятью реакторами: И-1, ЭИ-2, АДЭ-3, АДЭ-4, и АДЭ-5. Реактор И-1, пущенный в эксплуатацию 20 ноября г., являлся прямоточным по конструкции и использовался исключительно для наработки плутония. В сентябре 1958 г. и июле 1961 г. на комбинате начали работать реакторы ЭИ-2 и АДЭ-3 соответственно. Реакторы АДЭ-4 и АДЭ-5 были введены в эксплуатацию в 1965 и 1967 гг. За исключением И-1, все реакторы Томска-7 имели замкнутую схему теплосъема и использовались как для наработки плутония, так и для производства тепла и электричества.
Первые три реактора в Томске-7 были остановлены 21 августа 1990 г. (И-1), 31 декабря 1990 г. (ЭИ-2) и 14 августа 1992 г. (АДЭ-3). Два остающихся в эксплуатации реактора имеют суммарную мощностью 3800 МВт и вырабатывают 660- 700 МВт тепла и 300 МВт электричества. Тепловая энергия используется для теплоснабжения Северска (Томск-7) и близрасположенного Томска, а также для производственных нужд СХК и находящегося по соседству нефтехимического комплекса.
В настоящее время отработавшее топливо промышленных реакторов СХК перерабатывается на входящем в состав комбината радиохимическом заводе, который был введен в эксплуатацию в 1956 До 1983 г. переработка топлива осуществлялась по ацетатной схеме. После этого завод был переведен на технологию Пурекс.
До недавнего времени выделенный на радиохимическом заводе плутоний поступал на химико-металлургический завод Томска-7 для перевода в металлическую форму, легирования и производства деталей боеприпасов.105 По всей видимости свеженаработанный плутоний смешивался с плутонием из снятых с вооружения боезарядов для поддержания на приемлемом уровне концентрации
америция-241 в плутонии.106 Начиная с октября 1994 г. свеженаработанный плутоний переводится в форму двуокиси и направляется на хранение.
Другой участок химико-металлургического завода ведет работы по обработке высокообогащенного урана и производству из него оружейных деталей. В 1994- гг. здесь же были начаты операции перевода высокообогащенного оружейного урана в уран низкого обогащения в рамках российско-американского соглашения о продаже ВОУ. Выполняемая в Томске-7 часть работ включает в себя перевод металлического урана в окисную форму. Значительная часть урана проходит через передел радиохимической переработки для удаления химических загрязнителей (легирующих материалов, остатков продуктов деления и трансурановых элементов). Очищенный порошок окиси урана упаковывается в герметичные контейнеры и направляется в Свердловск-44 и Красноярск-45 для фторирования и разобогащения. В конце 1996 г. в Томске-7 также начал действовать производственный участок по фторированию и разобогащению урана.107
Красноярск-26 (Горно-химический комбинат)
Комбинат в Красноярске-26108 был создан в феврале 1950 г.109 для производства оружейного плутония. Отличительной особенностью реакторного и радиохимического заводов и связанных с ними цехов, лабораторий и складских помещений Красноярска-26 является их размещение в многоуровневой системе туннелей внутри горного массива, на глубине 200-250 м под землей.
Реакторный завод Красноярска-26 был пущен в эксплуатацию 25 августа 1958 г. и к 1964 г. на комбинате действовало три графитовых реактора (АД, АДЭ-1, АДЭ-2). В 1964 г. в Красноярске-26 начал работать радиохимический завод. (С 1958 по 1964 г. отработавшее топливо реакторов перерабатывалось на заводах Челябинска-65 и/или Томска-7.) Двуокись плутония - конечный продукт комбината-передавалась на химико-металлургические заводы Челябинска-65 и/или Томска-7 для производства металлического плутония и оружейных деталей. Начиная с октября 1994 г. выделенный плутоний в форме оксида хранится на складах комбината.
Два прямоточных реактора Красноярска-26 (АД и АДЭ-1) были остановлены в 1992 г.11 Третий реактор имеет двухконтурную систему охлаждения и по своей конструкции аналогичен действующим реакторам Томска-7. Как и в случае Томска-7, реактор производит тепло для местного населения и не может быть остановлен без постройки замещающих мощностей.
В 1972 г. были начаты работы по проектированию комплекса радиохимического завода РТ-2 в Красноярске-26. В соответствии с проектом завод РТ-2 должен осуществлять радиохимическую переработку топлива реакторов ВВЭР-1000. Строительство первой очереди завода-хранилища отработавшего реакторного топлива -началось в 1976 г. на наземной площадке находящейся в 4-5 км к северу от подземного комплекса. Хранилище вместимостью 6000 т топлива было введено в эксплуатацию в декабре 1985 г. и к 1995 г. было заполнено на 15-20%.ш Строительство второй очереди РТ-2 -радиохимического завода производительностью 1500 т/год-также началось в конце 70-х годов. Однако, вследствие недостаточного финансирования и противодействия местного экологического движения, в 1989 г. строительство завода (построенного на 30%) было заморожено. Несмотря на решение правительства России о необходимости завершения строительства, принятое в феврале 1995 г.,112 будущее завода РТ-2 представляется неясным.

Но по мере работы реактора оружейный изотоп плутония быстро выгорает, в итоге в реакторе накапливается большое количество изотопов 240 Pu, 241 Pu и 242 Pu, образующихся при последовательных захватах нескольких нейтронов - так как глубина выгорания обычно определяется экономическими факторами. Чем меньше глубина выгорания, тем меньше изотопов 240 Pu, 241 Pu и 242 Pu, будет содержать плутоний, выделенный из облучённого ядерного топлива, но тем меньшее количество плутония в топливе образуется.

Специальное производство плутония для оружия, содержащего почти исключительно 239 Pu, требуется, в основном, потому, что изотопы с массовыми числами 240 и 242 создают высокий нейтронный фон , затрудняющий конструирование эффективных ядерных боеприпасов, кроме того, 240 Pu и 241 Pu имеют существенно меньший период полураспада , чем 239 Pu, из-за чего плутониевые детали нагреваются, и в конструкцию ядерного боеприпаса приходится дополнительно вводить элементы теплоотвода. Дополнительно, продукты распада тяжёлых изотопов портят кристаллическую решётку металла, что может привести к изменению формы деталей из плутония, что чревато отказом ядерного взрывного устройства.

В принципе, все эти затруднения преодолимы, и были успешно испытаны ядерные взрывные устройства из «реакторного» плутония, однако, в боеприпасах, где не последнюю роль играет компактность, малый вес, надёжность и долговечность, применяется исключительно специально произведённый оружейный плутоний. Критическая масса металлических 240 Pu и 242 Pu весьма велика, 241 Pu - несколько больше, чем у 239 Pu.

Производство

Утилизация

С конца 1990-х США и Россия разрабатывали соглашения по утилизации избыточного оружейного плутония .

См. также

Примечания

  1. Critical mass // European nuclear society (англ.)
  2. СОГЛАШЕНИЕ между Правительством Российской Федерации и Правительством Соединенных Штатов Америки о сотрудничестве в отношении реакторов, производящих плутоний (с изменениями на 12 марта 2003 года) , подготовлено АО "Кодекс"
  3. В Железногорске был закрыт последний в стране реактор, производивший оружейный плутоний последние полвека. (неопр.) . Проверено 10 ноября 2014.
  4. Ivan Fursov . Uranium diet: US nuclear power industry could face fuel shortage (англ.) , RT (September 25, 2013). Проверено 27 декабря 2013. «Production of military-grade plutonium has also been stopped in both the US (in 1988) and Russia (in 1994).».
  5. О международном сотрудничестве России в области утилизации избыточного оружейного плутония / МИД РФ, Департамент по вопросам безопасности и разоружения МИД Российской Федерации, 11-03-2001
  6. Убеев А. В. Соглашение об утилизации плутония / Ядерное нераспространение: Краткая энциклопедия, ПИР-центр
  7. 2000 Plutonium Management and Disposition Agreement / State.gov, Office of the Spokesman, April 13, 2010 (англ.)
  8. Подписан закон о ратификации Соглашения между правительствами России и США об утилизации плутония, не являющегося более необходимым для целей обороны // kremlin.ru, 7 июня 2011
  9. kremlin.ru,

Существует 15 известных изотопов плутония. Самый важный из них – Pu-239 с периодом полураспада 24360 лет. Удельная масса плутония составляет 19,84 при температуре 25оС. Металл начинает плавиться при температуре 641оС, закипает при 3232оС. Его валентность бывает 3, 4, 5 или 6.

У металла серебристый оттенок, и он желтеет при взаимодействии с кислородом. Плутоний – химический реактивный металл и легко растворяется в концентрированной соляной , в хлорной кислоте, в йодисто-водородной кислоте. При -распаде металл выделяет энергию тепла.

Плутоний - открытый вторым по счету трансурановый актинид. В природе этот металл можно обнаружить в небольших количествах в уранических рудах.

Плутоний ядовит и требует аккуратного обращения. Наиболее расщепляемый изотоп плутония использовался в качестве в ядерном оружии. В частности, его применяли в бомбе, которая была сброшена на японский город Нагасаки.

Это радиоактивный яд, накапливающийся в костном мозге. При проведении экспериментов над людьми в целях изучения плутония произошло несколько несчастных случаев, некоторые с летальным исходом. Важно, чтобы плутоний не достиг критической массы. В растворе плутоний быстрее образует критическую массу, чем в твердом состоянии.

Атомное число 94 означает, что все атомы плутония имеют 94 . На воздухе на поверхности металла образуется оксид плутония. Этот оксид пирофорный, поэтому тлеющий плутоний будет мерцать, как зола.

Существует шесть аллотропных форм плутония. Седьмая форма появляется при высоких температурах.

В водном растворе плутоний меняет цвет. На поверхности металла появляются различные оттенки по мере его окисления. Процесс окисления нестабилен, и цвет плутония может внезапно меняться.

В отличие от большинства веществ, плутоний уплотняется, когда плавится. В расплавленном состоянии этот элемент более вязкий, чем другие металлы.

Металл применяется в радиоактивных изотопах в термоэлектрических генераторах, на которых работают космические корабли. В медицине его применяют при производстве электронных стимуляторов для сердца.

Вдыхание паров плутония опасно для здоровья. В некоторых случаях это может спровоцировать рак легких. У вдыхаемого плутония металлический привкус.

Композиция изотопов плутония, накапливающегося в реакторе в результате реакций, происходящих в урановом топливе, зависит от степени выгорания топлива. Из 5 основных образовавшихся изотопов 2 с нечетными массовыми номерами – 239 Pu и 241 Pu являются ращепляющимися, т.е. способными к ращеплению под действием тепловых нейтронов, и в ринципе могут быть использованы в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, значение имеет количестио накоплен-ного 239Pu и 241Pu. Для ядерного же оружия необходим практически чистый 239Pu т.к. излучатели нейтронов 240Pu и 238Pu могут спонтанно вызвать “пред-начальное воспламенение”, а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому разница в “качестве” плутония обычно определяется его изотопным составом.

239 Pu накапливаеться в обычном энергетическом реакторе на урановом топливе в результате нейтронного захвата изотопом 238 U.Одновременно с этим происходит основная реакция деления изотопа 235 U сопровождающаяся выдел поэтому для того, чтобы его можно было использовать в качестве топлива в легководных реакторвах, естественный уран обогащают, доводя содержание 235 U до 3-4%. После одного года работы типичного ЛВР мощностью 1000 МВт образуется около 200 кг плутония из которых около 150 кг составляет 239 Pu.

Таблица 2 - Виды плутония.

Таким образом, при работе атомного уранового реактора в его топливных стержнях накапливаются различные изотопы плутония.

Плутоний, производимый в топливных элементах обычных промышленных атомных реакторов, подвергшихся экспозиции 33000 МВт*сут/т уранового топлива, имеет приблизительно следующий изотопный состав:

Таблица 3 - Изотопный состав реакторного плутония (степень выгорания 30-40 МВт*сут/кг).

Лишь два из пяти изотопов плутония, 239 Pu и 241 Pu, являются расщепляющимися (делящимися), т.е. способными к расщеплению в результате захвата тепловых (медленных) нейтронов, и в принципе пригодны для использования в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, важно знать только количество 239 Pu и 241 Pu, обозначаемое Puf от слов Pu (плутоний) и fissile (делящийся). Полное же количество всех изотопов плутония обозначается Put от слова total (полный, общий, итоговый).

Для ядерного же оружия желательно иметь практически чистый 239 Pu, поскольку изотопы 240 Pu и 238 Pu самопроизвольно испускают нейтроны, которые могут вызвать т. н. «предначальное воспламенение», а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому принято классифицировать плутоний по "качеству" в соответствии с его изотопным составом.

Хотя предначальное воспламенение уменьшает мощность взрыва ядерного взрывного устройства, изготовленного из реакторного плутония, можно утверждать, что мощность взрыва сравнительно простого взрывного устройства из реакторного плутония, подобного бомбе, взорванной в Нагасаки, будет равно примерно одной или нескольким килотоннам, даже если предначальное воспламенение произойдет в наименее благоприятный момент. В Японии и некоторых европейских странах сторонники плутония продолжают утверждать, что из-за предначального воспламенения реакторный плутоний практически не может быть использован в ядерном оружии, и что поэтому плутониевые программы в этих странах, основанные на выделении и использовании реакторного плутония, следует рассматривать исключительно как «мирные». Однако это мнение противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии наук, выпущенном в 1994 году и посвященном утилизации ядерных оружейных материалов, утверждается, что «плутоний практически любого изотопного состава может быть использован в ядерном оружии».

В некоторых европейских странах апологеты плутония продолжают утверждать, что реакторный плутоний практически не может быть использован в ядер-ном оружии и на этом основании плутониевые программы в таких странах, основанные на выделении и использовании реакторного плутония, предлагается рассматривать, исключетельно, как “мирные”. Утверждение о “мирном” характере реакторного плутония, однако, противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии Наук, выпущенном в 1991 году и посвященном диспозиции ядерных оружейных материалов, утверждается, что “плутоний с практически любым изотопным составом может быть использован в ядерном оружии”. Можно привести и другие научные и технические аргументы в пользу того, что реакторный плутоний является подходящим материалом для ядерного оружия.

МОКС-топливо

Поскольку и реакторный плутоний, и плутоний более высоких сортов является смесью делящихся изотопов, он в принципе пригоден для использования в качестве реакторного топлива. Обычно плутоний используется в этом качестве в виде смеси диоксида плутония PuO 2 с диоксидом урана UO 2 . Эта смесь оксидов (PuO 2 +UO 2), называемая МОКС-топливом, обычно используется в двух типах реакторов - в реакторах на быстрых нейтронах (БН) и в легководных реакторах (ЛВР).

Реактор на БН может вырабатывать плутоний в результате захвата нейтронов ядрами 238 U, находящегося в активной зоне реактора и в окружающем ее бланкете, в то время как плутоний (МОКС-топливо с 20-30% плутония) "горит" в активной зоне. Такой реактор называют размножителем или бридером, поскольку он вырабатывает больше плутония, чем потребляет. Смысл бридера в том, что он повышает эффективность использования ресурсов урана в целых 60 раз, и он позволяет преобразовать ранее остававшийся без применения 238 U в плутоний и одновременно вырабатывать полезную мощность. Из-за этих заманчивых перспектив реактор на БН стал с самого начала развития атомной промышленности ее "голубой мечтой", почти «вечным двигателем».

Но, увы - реальность оказалась больше похожа на кошмар, чем на прекрасный сон. Чтобы размножение было возможным, реакция деления в реакторе на БН поддерживается быстрыми (высокоэнергетическими) нейтронами, в отличие от ЛВР, которые работают на тепловых нейтронах. Поскольку нет возможности использовать замедляющий охладитель, приходится охлаждать активную зону реактора на БН расплавом щелочного металла, который имеет высокую химическую активность и реагирует со взрывом с воздухом и водой.

Отметим далее, что размножение плутония происходит не так быстро, как хотелось бы: время удвоения, то есть время, за которое один бридер создает достаточно плутония для загрузки другого такого же реактора (40 лет), значительно превышает время жизни первого реактора (не более 30 лет). Это указывает на другую ключевую проблему бридера: в конечном итоге для его эксплуатации должна быть создана система, включающая множество этапов, в том числе выделение плутония, загрузка топлива в реакторы, переработка отработавшего топлива и бланкета.

Эти и другие технические трудности бридеров стали причиной неэкономичности их использования, и оба эти недостатка - технические сложности и высокие стоимостные показатели - привели к тому, что США и все западноевропейские страны свернули свои бридерные программы.

Применение МОКС в качестве ядерного топлива: проблемы безопасности

С окончанием периода «холодной войны» угроза начала мировой войны с применением ядерного оружия уменьшилась почти до нуля. Ее место заняла опасность распространения ядерного оружия и применения его ранее не обладавшими им государствами или группами, что может произойти в случае, если в их руки попадет высокообогащенный уран или плутоний.

В настоящее время основная угроза безопасности в связи с ядерным оружием возникает из-за распространения его на страны, ранее им не обладавшие. Пока лишь семь государств обладают ядерным оружием. Это Китай, Франция, Россия, США, Великобритания, Индия и Пакистан.

На данный момент США располагают 9500 ядерных боеголовок, Россия - примерно 10500. Если разрабатываемые в настоящее время соглашения о сокращении вооружений вступят в силу, Россия и США уменьшат свои ядерные арсеналы до примерно 5000 с каждой стороны к 2003 году. Но даже после столь значительного сокращения эти две страны будут обладать весьма внушительными запасами ядерного оружия.

Великобритания располагает 400 ядерных боеголовок; Франция примерно 500; Китай, вероятно, около 400; Индия около 40; Пакистан примерно 7. Можно также предполагать, что Иран, Израиль и Северная Корея стремятся к созданию ядерного оружия.

Тем не менее, маловероятно, что какой-либо стране удастся войти в клуб ядерный держав в течение ближайших 10-15 лет. В течение этого периода произойдет широкое распространение атомных технологий, ориентированных на мирное применение (но которые можно использовать для развития военных программ). Одновременно будет происходить распространение технологии создания баллистических ракет. Опасное сочетание! Когда это произойдет (а можно опасаться, что это случится примерно через 10-15 лет), распространение ядерного оружия может пойти быстрыми темпами.

Сейчас значительное внимание уделяется деятельности ядерных держав по модернизации их ядерных вооружений («вертикальная гонка вооружений»). Однако не следует недооценивать опасности, которые таит в себе попадание ядерного оружия в распоряжение государств, ранее его не имевших («горизонтальная гонка вооружений»), поскольку это создает угрозу применения ядерного оружия в будущих локальных конфликтах.

Обретение какой-либо державой статуса ядерной будет дестабилизировать обстановку в соответствующем регионе. Более того, одна лишь возможность такого обретения наносит ущерб безопасности, заставляя страны-соседи напрягать силы, чтобы не отстать от лидера. Например, если Япония начнет работать над созданием ядерного оружия, Северная и Южная Кореи будут склонны сделать то же, а Китай, вероятно, займется наращиванием ядерных арсеналов.

Кажется маловероятным, что правительства будут принимать политические решения о создании ядерного оружия в ближайшее время, зато риск попадания ядерного оружия в руки террористов все возрастает. Эта опасность уже стала более актуальной, чем угроза мировой ядерной войны, по крайней мере, в ближайшей и среднесрочной перспективе.

Террористы неизменно стремятся к нанесению возможно большего ущерба. От ставших привычными попыток взрыва самолетов они переходят к более серьезным действиям, таким как атака с использованием нервно-паралитического газа в Токио. Этот пример показывает, что лидеры террористических группировок не останавливаются перед применением современного оружия массового уничтожения - в данном случае химического. Ядерное оружие может стать следующим в этой цепи.

Использование МОКС в качестве топлива для ядерных реакторов с последующим выделением плутония из отработанных топливных элементов резко увеличивает опасность попадания делящихся материалов, пригодных для изготовления ядерного оружия, в руки агрессивно настроенных государств и террористов. В простейшей атомной бомбе вся энергия взрыва возникает за счет реакции деления ядер.

Ниже описано устройство плутониевой атомной бомбы имплозионного типа. Те, кому удастся ее изготовить, могут быть уверены в том, что она сработает - им не потребуется проводить испытаний, так что изготовление и последующее размещение взрывного устройства можно будет осуществить в тайне.