Компоновка вертолета. Вертолетные двигатели: обзор, характеристики

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

Вертолет - это винтокрылая машина, в которой подъемную силу и силу тяги создает винт. Несущий винт служит для поддержания и перемещения вертолета в воздухе. При вращении в горизонтальной плоскости несущий винт создает тягу(Т) направленную вверх, выполняет роль подъёмной силы(Y). Когда тяга несущего винта будет больше веса вертолета(G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги несущего винта вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу несущего винта сделать несколько меньше веса вертолета. Поступательное движение вертолета(P) обеспечивается наклоном плоскости вращения несущего винта при помощи системы управления винтом. Наклон плоскости вращения винта вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная — вызывать поступательное перемещение вертолета в соответствующем направлении.

Рис 1. Схема распределения сил

Конструкция вертолета

Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудования. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения несущего винта,и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки несущего винта (МИ-24)).Силовая установка(двигатели) является источником механической энергии для приведения во вращение несущего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.). Несущий винт(НВ) служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей и втулки несущего винта. Рулевой винт служит для уравновешивания реактивного момента, возникающего при вращении несущего винта, и для путевого управления вертолетом. Сила тяги рулевого винта создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент несущего винта. Для разворота вертолёта достаточно изменить величину тяги рулевого винта. Рулевой винт так же состоит из лопастей и втулки. Управление несущим винтом производится при помощи специального устройства, называемого автоматом перекоса. Управление рулевым винтом производится от педалей. Взлетно-посадочные устройства служат опорой вертолета при стоянке и обеспечивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж

Рис.2 Основные части вертолета:

1 — фюзеляж; 2 — авиадвигатели; 3 — несущий винт (несущая система); 4 — трансмиссия; 5 — хвостовой винт; 6 — концевая балка; 7 — стабилизатор; 8 — хвостовая балка; 9 — шасси

Принцип создания подъемной силы винтом и система управления винтом

При вертикальном полете п олная аэродинамическая сила несущего винта выразится как произведение массы воздуха, протекающего через поверхность, сметаемую несущим винтом за одну секунду, на скорость уходящей струи:

где πD 2 /4 - площадь поверхности, ометаемой несущим винтом; V— скорость полета в м/сек; ρ — плотность воздуха; u — скорость уходящей струи в м/сек.

По сути сила тяги винта равна силе реакции при ускорении воздушного потока

Для того чтобы вертолет двигался поступательно, нужен перекос плоскости вращения винта, причем изменение плоскости вращения достигается не наклоном втулки несущего винта (хотя визуальный эффект может быть именно такой), а изменением положения лопасти в разных частях квандрантов описываемой окружности.

Лопасти несущего винта, описывая полный круг вокруг оси при его вращении, обтекаются встречным потоком воздуха по-разному. Полный круг - это360º . Тогда примем заднее положение лопасти за0º и далее через каждые90º полный оборот. Так вот лопасть в интервале от0º до180º - это лопастьнаступающая , а от180º до 360º -отступающая . Принцип такого названия, я думаю, понятен. Наступающая лопасть движется навстречу набегающему потоку воздуха, и суммарная скорость ее движения относительно этого потока возрастает потому что сам поток, в свою очередь, движется ей навстречу. Ведь вертолет летит вперед. Соответственно растет и подъемная сила.


Рис.3 Изменение скоростей набегающего потока при вращении винта для вертолета МИ-1 (средние скорости полета).

У отступающей лопасти картина противоположная. От скорости набегающего потока отнимается скорость, с которой эта лопасть как бы от него «убегает». В итоге имеем подъемную силу меньше. Получается серьезная разница сил на правой и левой стороне винта и отсюда явныйпереворачивающий момент . При таком положении вещей вертолет при попытке движения вперед будет иметь тенденцию к переворачиванию. Такие вещи имели место при первом опыте создания винтокрылых аппаратов.

Чтобы этого не происходило, конструктора применили одну хитрость. Дело в том, что лопасти несущего винта закреплены вовтулке (это такой массивный узел, насаженный на выходной вал), но не жестко. Они с ней соединены с помощью специальных шарниров (или устройств, им подобных). Шарниры бывают трех видов:горизонтальные, вертикальные и осевые.

Теперь посмотрим что же будет происходить с лопастью, которая подвешена к оси вращения на шарнирах. Итак, наша лопасть вращается с постоянной скоростью без каких-либо управляющих воздействий извне .


Рис. 4 Силы, действующие на лопасть, подвешенную ко втулке винта на шарнирах.

От0º до90º скорость обтекания лопасти растет, значит растет и подъемная сила. Но! Теперь лопасть подвешена на горизонтальном шарнире. В результате избыточной подъемной силы она, поворачиваясь в горизонтальном шарнире, начинает подниматься вверх (специалисты говорят «делаетвзмах »). Одновременно из-за увеличения лобового сопротивления (ведь скорость обтекания возросла) лопасть отклоняется назад, отставая от вращения оси винта. Для этого как раз и служит вертикальный шар-нир.

Однако при взмахе получается, что воздух относительно лопасти приобретает еще и некоторое движение вниз и, таким образом, угол атаки относительно набегающего потока уменьшается. То есть рост избыточной подъемной силы замедляется. На это замедление оказывает свое дополнительно влияние отсутствие управляющего воздействия. Это значит, что тяга автомата перекоса, присоединенная к лопасти, сохраняет свое положение неизменным, и лопасть, взмахивая, вынуждена поворачиваться в своем осевом шарнире, удерживаемая тягой и, тем самым, уменьшая свой установочный угол или угол атаки по отношению к набегающему потоку. (Картина происходящего на рисунке. ЗдесьУ - это подъемная сила,Х - сила сопротивления,Vy - вертикальное движение воздуха,α - угол атаки.)


Рис.5 Картина изменения скорости и угла атаки набегающего потока при вращении лопасти несущего винта.

До точки90º избыточная подъемная сила будет продолжать расти, однако из-за вышесказанного со все большим замедлением. После90º эта сила будет уменьшаться, но из-за ее присутствия лопасть будет продолжать двигаться вверх, правда все медленнее. Максимальную высоту взмаха она достигнет уже несколько перевалив за точку180º . Это происходит потому, что лопасть имеет определенный вес, и на нее действуют еще исилы инерции .

При дальнейшем вращении лопасть становится отступающей, и на нее действуют все те же процессы, но уже в обратном направлении. Величина подъемной силы падает и центробежная сила вместе с силой веса начинают опускать ее вниз. Однако при этом растут углы атаки для набегающего потока (теперь уже воздух движется вверх по отношению к лопасти), и растет установочный угол лопасти из-за неподвижности тягавтомата перекоса вертолета . Все происходящее поддерживает подъемную силу отступающей лопасти на необходимом уровне. Лопасть продолжает опускаться и минимальной высоты взмаха достигает уже где-то после точки0º , опять же из-за сил инерции.

Таким образом, лопасти вертолета при вращении несущего винта как бы «машут » или еще говорят «порхают». Однако это порхание вы, так сказать, невооруженным взглядом вряд ли заметите. Подъем лопастей вверх (как и отклонение их назад в вертикальном шарнире) очень незначительны. Дело в том, что на лопасти оказывает очень сильное стабилизирующее воздействие центробежная сила. Подъемная сила, например, больше веса лопасти в10 раз , а центробежная - в100 раз . Именно центробежная сила превращает на первый взгляд «мягкую» гнущуюся в неподвижном положении лопасть в жесткий, прочный и отлично работающий элемент несущего винта вертолета вертолета.

Однако несмотря на свою незначительность вертикальное отклонение лопастей присутствует, и несущий винт при вращении описывает конус, правда очень пологий. Основание этого конуса и естьплоскость вращения винта (см рис1.)

Для придания вертолету поступательного движения нужно эту плоскость наклонить, дабы появилась горизонтальная составляющая полной аэродинамической силы, то есть горизонтальная тяга винта. Иначе говоря, нужно наклонить весь воображаемый конус вращения винта. Если вертолету нужно двигаться вперед, значит конус должен быть наклонен вперед.

Исходя из описания движения лопасти при вращении винта, это означает, что лопасть в положении180º должна опуститься, а в положении0º (360º) должна подняться. То есть в точке180º подъемная сила должна уменьшиться, а в точке0º(360º) увеличиться. А это в свою очередь можно сделать уменьшив установочный угол лопасти в точке180º и увеличив его в точке0º (360º) . Аналогичные вещи должны происходить при движении вертолета в других направлениях. Только при этом, естественно, аналогичные изменения положения лопастей будут происходить в других угловых точках.

Понятно, что в промежуточных углах поворота винта между указанными точками установочные углы лопасти должны занимать промежуточные положения, то есть угол установки лопасти меняется при ее движении по кругу постепенно,циклично .Он так и называется циклический угол установки лопасти (циклический шаг винта ). Я выделяю это название потому, что существует еще иобщий шаг винта (общий угол установки лопастей). Он изменяется одновременно на всех лопастях на одинаковую величину. Обычно это делается для увеличения общей подъемной силы несущего винта.

Такие действия выполняетавтомат перекоса вертолета . Он изменяет угол установки лопастей несущего винта (шаг винта), вращая их в осевых шарнирах посредством присоединенных к ним тяг. Обычно всегда присутствуют два канала управления: по тангажу и по крену, а также канал изменения общего шага несущего винта.

Тангаж означает угловое положение летательного аппарата относительно его поперечной оси (нос вверх-вниз), акрен , соответственно, относительно его продольной оси (наклон влево-вправо).

Конструктивноавтомат перекоса вертолета выполнен достаточно сложно, но пояснить его устройство вполне можно на примере аналогичного узла модели вертолета. Модельный автомат, конечно, устроен попроще своего старшего собрата, но принцип абсолютно тот же.

Рис. 6 Автомат перекоса модели вертолета

Это двухлопастной вертолет. Управление угловым положением каждой лопасти осуществляется через тяги6 . Эти тяги соединены с так называемой внутренней тарелкой2 (из белого металла). Она вращается вместе с винтом и в установившемся режиме параллельна плоскости вращения винта. Но она может менять свое угловое положение (наклон), так как закреплена на оси винта через шаровую опору3 . При изменении своего наклона (углового положения) она воздействует на тяги6 , которые, в свою очередь, воздействуют на лопасти, поворачивая их в осевых шарнирах и меняя, тем самым, циклический шаг винта.

Внутренняя тарелка одновременно является внутренней обоймой подшипника, внешняя обойма которого - этовнешняя тарелка винта1 . Она не вращается, но может менять свой наклон (угловое положение) под воздействием управления по каналу тангажа4 и по каналу крена5 . Меняя свой наклон под воздействием управления внешняя тарелка меняет наклон внутренней тарелки и в итоге наклон плоскости вращения несущего винта. В итоге вертолет летит в нужном направлении.

Общий шаг винта меняется перемещением по оси винта внутренней тарелки2 при помощи механизма7 . В этом случае угол установки меняется сразу на обеих лопастях.

Для более лучшего понимания помещаю еще несколько иллюстраций втулки винта с автоматом перекоса.

Рис. 7 Втулка винта с автоматом перекоса (схема).


Рис. 8 Поворот лопасти в вертикальном шарнире втулки несущего винта.

Рис. 9 Втулка несущего винта вертолета МИ-8

На сегодняшний день люди изобрели множество разных видов техники, которая может не только перемещаться по дорогам, но и летать. Самолеты, вертолеты и другие летательные аппараты позволили исследовать воздушное пространство. Вертолетные двигатели, которые потребовались для нормальной работоспособности соответствующих машин отличаются высокой мощностью.

Общее описание устройства

В настоящее время такие агрегаты бывают двух типов. Первый вид - это поршневые или же Второй вид - воздушно-реактивные моторы. Кроме того, в качестве вертолетного двигателя может выступать еще и ракетный. Однако он обычно применяется не в качестве основного, а кратковременно включается в работу машины, когда необходима дополнительная мощность, к примеру, во время посадки или же взлета техники.

Раньше довольно часто использовались для установки на вертолеты. У них была одновальная схема, однако они достаточно сильно стали вытесняться другими типами оборудования. Особенно сильно это стало заметно на многодвигательных вертолетах. На такой технике наиболее широкое распространение получили двухвальные турбовинтовые вертолетные двигатели с так называемой свободной турбиной.

Двухвальные агрегаты

Отличительная черта таких устройств была в том, что у турбокомпрессора отсутствовала прямая механическая связь с несущим винтом. Применение двухвальных турбовинтовых агрегатов считалось довольно эффективным, так как они позволяли наиболее полно использовать силовое устройство вертолета. Все дело в том, что в таком случае частота вращения несущего винта техники не зависела от частоты вращения турбокомпрессора, это в свою очередь позволяло подбирать оптимальную частоту под каждый режим полета отдельно. Если говорить другими словами, то двухвальный турбовинтовой вертолетный двигатель обеспечивал эффективную и надежную работу силовой установки.

Реактивный привод винта

В вертолетах также используется реактивный привод винта. В таком случае окружное усилие будет прикладываться непосредственно к самим лопастям винта, не применяя при этом тяжелой и сложной механической трансмиссии, которая бы заставляла вращаться весь винт целиком. Чтобы создать такое окружное усилие, используются либо автономные реактивные двигатели, которые располагаются на лопастях несущего винта, либо прибегают к истечению газа (сжатому воздуху). В данном случае выходить газ будет через специальные сопловые отверстия, которые располагаются на конце каждой лопасти.

Что касается экономичной работы реактивного привода, то здесь она будет уступать механическому. Если выбирать наиболее экономичный вариант только среди реактивных устройств, то лучшим является турбореактивный двигатель, который располагается на лопастях винта. Однако конструктивно создать такое приспособление оказалось слишком трудно, именно поэтому широкого практического применения такие приборы не получили. Из-за этого заводы вертолетных двигателей не стали заниматься его массовым производством.

Первые модели турбовальных устройств

Первые турбовальные двигатели были созданы еще в 60-70 гг. Необходимо упомянуть, что в то время такое оборудование полностью отвечало всем запросам не только гражданской авиации, но и военной. Такие агрегаты были способны обеспечить паритет, а в некоторых случаях и превосходство над изобретениями конкурентов. Наиболее массовое производство вертолетных двигателей турбовального типа обеспечивалось за счет сборки модели ТВ3-117. Стоит отметить, что этот аппарат имел несколько разных модификаций.

Кроме него, хорошее распространение получила также модель Д-136. До выхода этих двух моделей выпускались Д-25В и ТВ2-117, однако на тот момент они уже не могли оказать конкуренцию новым двигателям, а потому их производство прекратили. Однако справедливо будет сказать, что их было выпущено достаточно много, и они все еще установлены на тех видах воздушного транспорта, которые были выпущены достаточно давно.

Градация оборудования

В середине 80-х годов возникла необходимость в унификации устройства вертолетного двигателя. Чтобы решить поставленную задачу, все турбовальные и турбовинтовые двигатели, имеющиеся на тот момент, было решено привести к общему типоразмерному ряду. Данное предложение было принято на правительственном уровне, а потому возникло деление на 4 категории.

Первая категория - это устройства мощностью 400 л. с., вторая - 800 л. с., третья - 1600 л. с. и четвертая - 3200 л. с. Помимо этого, было разрешено создание еще двух моделей вертолетного газотурбинного двигателя. Их мощность составляла 250 л. с. (0 категория) и 6000 л. с. (5 категория). Кроме этого, подразумевалось, что каждая категория этих устройств будет способна формировать мощность на 15-25 %.

Дальнейшее развитие

Для того чтобы полностью обеспечить развитие и строительство новых моделей, ЦИАМ провела достаточно обширную научно-исследовательскую работу. Это позволило получить научно-технический задел (НТЗ), по которому будет идти развитие данного направления.

В таком НТЗ указывалось, что принцип работы вертолетных двигателей будущих поколений должен строиться на простом принципе термодинамического цикла Брайтона. В этом случае развитие и строительство новых агрегатов будет перспективным. Что касается конструктивного исполнения новых моделей, то они должны быть с одновальным газогенератором, а силовая турбина с выводом вала мощности вперед через данный газогенератор. Кроме этого, в конструкцию должен входить и встроенный редуктор.

В соответствии со всеми требованиями научно-технического задела на Омском МКБ были начаты работы по изготовлению такой модели двигателя для вертолета, как ТВ ГДТ ТВ-0-100, мощность этого аппарата должна была составлять 720 л. с., а применять его было решено на такой машине, как Ка-126. Однако в 90-е годы все работы были остановлены, несмотря на то что в тот период устройство было достаточно совершенным, а также имело возможность форсировать мощность до таких показателей, как 800-850 л. с.

Производство на ОАО «Рыбинские моторы»

В это же время на ОАО «Рыбинские моторы» занимались доводкой такой модели двигателя, как ТВ ГДТ РД-600В. Мощность устройства составляла 1300 л. с., а использовать его планировали для такого типа вертолета, как Ка-60. Газогенератор для такого агрегата был выполнен по достаточно компактной схеме, в которую входил четырехступенчатый центробежный компрессор. В нем были 3 осевых ступени и 1 центробежная. Частота вращения, которую обеспечивал такой агрегат, достигала 6000 об/мин. Отличным дополнением было и то, что такой двигатель дополнительно снабжался защитой от пыли и грязи, а также от попадания других посторонних предметов. Данный тип двигателя прошел множество разнообразных испытаний, а его окончательная сертификация была завершена в 2001 году.

Далее стоит отметить, что параллельно с доработкой этого мотора специалисты работали над созданием турбовинтового двигателя ТВД-1500Б, который планировалось применять на вертолетах модели Ан-38. Мощность данной модели всего на 100 л. с. выше и, таким образом, составляла 1400 л. с. Что касается газогенератора, то его схема и комплектация были такими же, как и на модели РД-600В. При их разработке, создании и комплектации планировалось, что они будут составлять базу для семейства таких двигателей, как турбовальные, турбовинтовые.

Мотоцикл с вертолетным двигателем

На сегодняшний день производство различного рода техники продвинулось достаточно широко. Это справедливо практически для всех отраслей, включая производство мотоциклов. Каждый производитель старался всегда сделать свою новую модель более уникальной и оригинальной, чем у конкурентов. Из-за такого стремления не так давно компания Marine Turbine Technologies выпустила первый мотоцикл, в конструкцию которого входил вертолетный двигатель. Естественно, что данное изменение сильно затронуло как конструктивную часть машины, так и ее технические характеристики.

Параметры техники

Естественно, что характеристики мотоцикла, который имеет в своем распоряжении двигатель от вертолета, обладает также уникальными техническими параметрами. Кроме того, что такое нововведение позволило разогнать мотоцикл до практически немыслимых 400 км/ч, есть и другие свойства, на которые также стоит обратить свое внимание.

Во-первых, объем топливного бака у такой модели составляет 34 литра. Во-вторых, вес техники достаточно сильно увеличился и составляет 208,7 кг. Мощность такого мотоцикла составляет 320 лошадиных сил. Максимальная возможная скорость, которую удалось развить на таком аппарате - 420 км/ч, а размер его колесных дисков составляет 17 дюймов. Последнее, о чем стоит сказать, так это о том, что работа вертолетного двигателя сильно сказалась и на процессе разгона, из-за чего техника достигает своего предела за считаные секунды.

Первое такое творение, которое компания Marine Turbine Technologies показала миру, называлось Y2K. Тут можно добавить, что точное время разгона до 100 км/ч занимает всего полторы секунды.

Подводя итог всему вышесказанному, можно сказать, что отрасль по созданию вертолетных двигателей прошла достаточно долгий путь, а нынешнее развитие технологий позволило применять продукцию даже в такой технике, как мотоциклы.

ВЕРТОЛЁТЫ

Рис. 1. К объяснению принципа полёта вертолёта

Несущий винт (НВ) служит для поддержания и перемещения вертолета в воздухе.
При вращении в горизонтальной плоскости НВ создает тягу (Т), направленную вверх и т.о. выполняет роль создателя подъёмной силы (Y). Когда тяга НВ будет больше веса вертолета (G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги НВ вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу НВ сделать несколько меньше веса вертолета. Сила (P) для поступательного движения вертолета обеспечивается наклоном плоскости вращения НВ при помощи системы управления винтом. Наклон плоскости вращения НВ вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная - вызывать поступательное перемещение вертолета в соответствующем направлении.

Рис. 2. Основные части вертолета:

1 – фюзеляж; 2 – авиадвигатели; 3 – несущий винт; 4 – трансмиссия;5 – хвостовой винт;
6 – концевая балка; 7 – стабилизатор; 8 – хвостовая балка; 9 – шасси

Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудо-вания. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения НВ, и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки – (МИ-24)). Силовая установка (двигатели) является источником механической энергии для приведения во вращение несу-щего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.).
НВ служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей
и втулки НВ. Трансмиссия служит для передачи мощности от двигателя к несущему и рулевому винтам. Составными элементами трансмиссии являются валы, редукторы и муфты. Рулевой винт (РВ) (бывает тянущий и толкающий) служит для уравновешивания реактив-ного момента, возникающего при вращении НВ, и для путевого управления вертолетом. Сила тяги РВ создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент от НВ. Для разворота вертолёта достаточно изменить величину тяги РВ. РВ так же состоит из лопастей и втулки.

Система управления (СиУпр) вертолета состоят из ручного и ножного управления. Они включают командные рычаги (ручку управления, рычаг «шаг-газ» и педали) и системы проводки к НВ и РВ. Управление НВ-ом производится при помощи специального устрой-ства, называемого автоматом перекоса. Управление РВ производится от педалей.

Взлетно-посадочные устройства (ВПУ) служат опорой вертолета при стоянке и обеспе-чивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж.

Рис. 3. Общий вид конструкции вертолёта (на примере боевого вертолёта МИ-24П).

Для того чтобы вертолет обладал высокими летно-техническими характеристиками и был эффективным транспортным средством, удобным в эксплуатации, он должен отвечать ряду требований. Эти требования можно разделить на общие для всех летательных аппаратов (ЛА) и специальные, зависящие от целевого назначения и особенностей боевого применения.

К общим требованиям относятся:

  • - получение назначенных летно-технических данных, достаточных характеристик устойчивости и управляемости при наименьших энергетических затратах;
  • - достаточная (но не избыточная) прочность и жесткость конструкции, обеспечивающие восприятие эксплуатационных нагрузок без остаточных деформаций и отсутствие опасных колебаний;
  • - высокая боевая живучесть, т. е. способность ЛА продолжать выполнение задания после воздействия на него поражающих средств противника;
  • - надежность конструкции, которая зависит от ее совершенства, качества изготовления, условий эксплуатации;
  • - технологичность конструкции, т. е. возможность широкой механизации и автоматизации производственных процессов, использования высокопроизводительных процессов (штамповки, прокатки, сварки и т. п.), высокая степень стандартизации деталей и узлов;
  • - минимальная масса конструкции, что обеспечивается рациональным выбором материалов, силовых схем, а также уточнением действующих нагрузок;
  • - удобство эксплуатации, обеспечиваемое достаточным количеством эксплуатационных разъемов, люков для осмотра и выполнения работ на технике, минимальным числом узлов и систем, требующих регулировки, применением эффективных средств контроля;
  • - ремонтопригодность, т. е. возможность быстрого и дешевого восстановления поврежденных частей, что обеспечивается взаимозаменяемостью основных частей и элементов, широким использованием модульных конструкций;
  • - безопасность полета, обеспечиваемая надежностью техники, хорошими аэродинамическими характеристиками, применением специальной автоматики, облегчающей пилотирование, сигнализацией о приближении к опасным режимам полета.

Многие из этих требований противоречивы. В ходе проектирования вертолетов происходит преодоление этих противоречий путем принятия компромиссных решений или разработки принципиально новых конструкций.

В связи с усложнением авиационной техники и повышением требований к уровню безопасности полетов существенно возросла важность эргономических требований к JTA. Эргономические требования сводятся к приспособленности ЛА, его кабины, командных рычагов управления, приборного и другого оборудования к физиологическим и психологическим возможностям человека для наиболее эффективного использования возможностей как ЛА, так и летчика. В этом отношении весьма важно правильное распределение функций между автоматикой JIA и летчиком.

Эргономические требования включают гигиенические, антропометрические, физиологические и психофизиологические требования к Л А. Гигиенические требования сводятся к соблюдению норм микроклимата и ограничению воздействия вредных факторов внешней среды на человека (шума, вибраций, температуры и т. д.). Антропометрические требования определяют размеры кабины, командных рычагов управления, их расположение в соответствии с ростом человека, длиной его конечностей и т. д. Физиологические требования задают величины управляющих усилий в соответствии с возможностями человеческого организма. Психофизиологические требования характеризуют приспособленность ЛА, приборного оборудования к особенностям органов чувств человека.

Кроме перечисленных выше общих требований к вертолетам предъявляются специальные требования, отражающие специфику их конструкции, режимов полета, способов создания подъемной силы, управления и так далее.

К специальным требованиям относятся:

  • - обеспечение вертикального взлета и посадки, висения на заданной высоте;
  • - обеспечение безопасной посадки на режиме самовращения несущего винта (НВ) при отказе силовой установки;
  • - допустимый уровень вибраций.

При разработке военного вертолета к нему предъявляются специальные требования, определяемые его назначением и условиями боевого применения, так называемые тактико-технические требования (ТТТ). Они задают летно-технические характеристики, необходимые для эффективного выполнения поставленных боевых задач: максимальную скорость, дальность полета, потолок, полезную нагрузку, состав экипажа, необходимое оборудование и вооружение. ТТТ разрабатываются с учетом современного уровня развития науки- и- техники и ближайших перспектив их развития.

Классификация вертолетов по конструктивным признакам

Вертолетом называют ЛА, у которого подъемная сила и тяга для поступательного полета создаются лопастями одного или нескольких вращающихся НВ. В отличие от крыла самолета лопа- ети НВ обтекаются набегающим потоком не только при поступательном полете, но и при работе на месте. Это обеспечивает вертолету возможность висеть неподвижно, взлетать и садиться вертикально.

В ходе зарождения и развития вертолетов было опробовано большое число различных схем, от простейших до сложных комбинированных ЛА. В результате были отброшены неудачные и выявились жизнеспособные схемы вертолетов, используемые в настоящее время.

Основным критерием различия этих схем принято считать количество и расположение несущих винтов. По числу НВ вертолеты могут быть одновинтовыми, двухвинтовыми и многовинтовыми. Современные вертолеты строятся только по одновинтовой и двухвинтовой схемам.

Одновинтовая схема отличается сравнительно малой массой, наибольшей простотой конструкции и системы управления. Однако для уравновешивания реактивного момента НВ такого вертолета необходим рулевой винт, потребляющий до 10% мощности силовой установки. Он устанавливается на длинной балке, увеличивающей габариты и массу вертолета, создает опасность для обслуживающего персонала.

Недостатком одновинтового вертолета является также узкий диапазон допустимых центровок, поскольку его балансировка возможна при условии, что центр масс расположен вблизи оси вала НВ.

НВ двухвинтовых вертолетов вращаются в противоположных направлениях, поэтому их реактивные моменты уравновешивают друг друга без дополнительных затрат мощности.

Вертолеты продольной схемы наиболее распространены среди двухвинтовых вертолетов благодаря ряду преимуществ:

  • - большой удобный фюзеляж;
  • - сравнительно широкий диапазон допустимых центровок благодаря возможности перераспределения тяги между НВ;
  • - хорошая продольная устойчивость и управляемость.

Продольная схема, однако, имеет ряд серьезных недостатков:

  • - сложная и длинная трансмиссия для передачи мощности к винтам и синхронизации их вращения в целях исключения столкновения лопастей;
  • - повышенный уровень вибраций;
  • - сложная система управления;
  • - отрицательное влияние переднего НВ на работу заднего, приводящее к значительным потерям мощности и усложнению конструкции редукторов и техники посадки на режиме самовращения НВ; для снижения вредного влияния задний НВ располагается выше переднего.

Двухвинтовые вертолеты поперечной схемы имеют ряд положительных качеств:

  • - удобный обтекаемый фюзеляж самолетного типа;
  • - удобство погрузки и выгрузки кабины;
  • - благоприятное взаимное влияние несущих винтов.

Серьезным недостатком поперечной схемы является необходимость специальной конструкции для размещения винтов, которая имеет большие лобовое сопротивление и массу. Для снижения лобового сопротивления эта конструкция может быть выполнена в виде крыла.

К недостаткам поперечной схемы следует также отнести узкий диапазон центровок и необходимость длинной трансмиссии для синхронизации НВ, трудности обеспечения устойчивости и управляемости.

Двухвинтовые вертолеты соосной схемы обладают наименьшими габаритами. НВ вертолета соосной схемы расположены один над другим и не требуют синхронизации вращения, что значительно упрощает и облегчает трансмиссию. Аэродинамическая симметрия схемы упрощает пилотирование и прицеливание.

Однако соосной схеме присущи определенные недостатки:

  • - сложная система управления;
  • - недостаточная путевая устойчивость;
  • - значительные вибрации;
  • - опасность столкновения лопастей НВ, вращающихся в противоположных направлениях;
  • - сложность посадки на режиме самовращения НВ.

Советским конструкторам удалось справиться с трудностями доводки опытных вертолетов такой схемы, и они выпускаются серийно.

У двухвинтового вертолета с перекрещивающимися винтами оси НВ расположены по бокам фюзеляжа и наклонены наружу. Ввиду потерь мощности, связанных с наклоном НВ, и очень сложной системой управления такая схема не получила широкого распространения.

Скорость полета вертолетов любых схем ограничена условиями обтекания НВ. При увеличении скорости полета концевые участки лопастей испытывают влияние сжимаемости воздуха и попадают в режим срыва потока, что приводит к сильным вибрациям и резкому увеличению потребляемой мощности. Поэтому максимальная скорость горизонтального полета обычных вертолетов не превышает 320-340 км/ч.

Для дальнейшего увеличения скорости полета необходимо разгрузить НВ. С этой целью на вертолет устанавливается крыло.

Дополнительная тяга в направлении полета вертолета может создаваться воздушным винтом (тянущим или толкающим) или турбореактивным двигателем. Скорость таких комбинированных ЛА может достигать 500 км/ч и выше. Несмотря на сложность конструкции, вертолеты комбинированной схемы являются перспективными.

В настоящее время наибольшее распространение у нас в стране и во всем мире получили вертолеты, выполненные по одновинтовой схеме с рулевым винтом.

Основные части вертолета, их назначение и компоновка

В процессе развития вертолетостроения сложился вполне определенный облик современного вертолета.

Основной частью вертолета является фюзеляж, предназначенный для размещения грузов, экипажа, оборудования, топлива и т. п. Кроме того, он является силовой базой, к которой крепятся все остальные части вертолета и передаются нагрузки от них. Фюзеляж представляет собой тонкостенную подкрепленную конструкцию. Центральная часть фюзеляжа обычно является грузовой кабиной, носовая - кабиной экипажа.

Хвостовая 8 и концевая 6 балки являются продолжением фюзеляжа и предназначены для размещения рулевого винта и оперения вертолета.

На потолочной панели центральной части фюзеляжа устанавливаются двигатели 1 (обычно два газотурбинных двигателя), выходные валы которых соединяются с главным редуктором.

Главный редуктор распределяет мощность, поступающую от двигателей, между агрегатами вертолета. Основным потребителем мощности двигателей является НВ, установленный на валу главного редуктора. Он предназначен для создания силы тяги, необходимой для полета вертолета, а также для продольного и поперечного управления.

Основными частями НВ являются: втулка 2 и прикрепленные к ней лопасти 3, непосредственно создающие подъемную силу.

При вращении НВ на вертолет действует реактивный момент, стремящийся развернуть его в противоположном направлении. Для уравновешивания этого момента служит рулевой винт 5. Его привод осуществляется от главного редуктора через систему валов и редукторов. Кроме того, рулевой винт используется для путевого управления вертолетом.

Шасси обеспечивает обирание вертолета при стоянке и передвижении по поверхности земли, а также снижение нагрузок при посадке.

Наибольшее распространение получила трех-опорная схема шасси с носовым колесом: основные опоры 9 располагаются позади центра масс вертолета, передняя 12-под носовой частью фюзеляжа. На скоростных вертолетах шасси может убираться в полете.

Оперение предназначено для повышения устойчивости вертолета. Оно состоит из стабилизатора 7 и киля, роль которого играет обычно специально спрофилированная концевая балка.

Компоновка двухвинтового вертолета соосной схемы отличается компактностью ввиду меньшего диаметра винтов и отсутствия рулевого винта с хвостовой и концевой балками. Однако соосное расположение НВ увеличивает высоту вертолета, а недостаточная путевая устойчивость требует установки достаточно мощного вертикального оперения.